Computation of Splitting Tables




1   Introduction


This file corresponds to an implementation in Magma of the function for the computation of the Splitting Tables defined in A New Tool For Computing Galois Groups And Galois Ideals[S. Orange, G. Renault, A. Valibouze].

Authors : S. Orange (LMAH, Le Havre University) and G. Renault (LIP6, Paris 6 University).

Source of this file : Documented Magma Code file.

2   Implementation


2.1   SplittingTable



function SplittingTable(d); Sortie1:=[]; Sortie2:=[]; Sortie1[1]:=[[0,0],[0,0]]; Sortie2[1]:=[0]; for i:=1 to NumberOfTransitiveGroups(d) do Gtest:=TransitiveGroup(d,i); OrbsStab:=Orbits(Stabilizer(Gtest,1)); TypeGroup:=[]; for o in OrbsStab do OrbIm:=OrbitImage(Stabilizer(Gtest,1),o); NumbGroup,DegGroup:=TransitiveGroupIdentification(OrbIm); GroupId:=[DegGroup,NumbGroup]; TypeGroup[#TypeGroup+1]:=GroupId; end for; TypeGroup:=Sort(TypeGroup); Indtest:=Index(Sortie1,TypeGroup); if Indtest eq 0 then Sortie1[#Sortie1+1]:=TypeGroup; Sortie2[#Sortie2+1]:=[i]; else Append(~Sortie2[Indtest],i); end if; end for; Sortie1:=Sortie1[2..#Sortie1]; Sortie2:=Sortie2[2..#Sortie2]; Sortie:= function(ligne) case ligne : when -1 : return Sortie1,Sortie2; when 0 : return #Sortie1; else return Sortie1[ligne],Sortie2[ligne]; end case; end function; return Sortie; end function;


3   Examples


In Magma the function SplittingTable can be used in the following manner:

3.1   Computation of the Splitting Table of degree 12


Here we want to study the splitting table of degree 12.

 

> f12:=SplittingTable(12);
> f12(0);
124
> f12(100);
[
    [ 1, 1 ],
    [ 3, 2 ],
    [ 8, 42 ]
]
[ 251, 254, 276 ]
> f12(119);
[
    [ 1, 1 ],
    [ 1, 1 ],
    [ 10, 39 ]
]
[ 293 ]


In this example one can see that the splitting table of degree 12 has 124 lines. The line number 100 gives the following informations: a polynomial with Galois group in {12T251, 12T254, 12T276} has 3 irreducible factors over its stem field which have Galois group conjugate to 1T1, 3T2 and 8T42 respectively. The line number 119 gives the following informations: a polynomial with Galois group conjugates to 12T293 has 3 irreducible factors over its stem field which have Galois group equal to 1T1, 1T1 and 10T39 respectively.

3.2   Application to constructive inverse Galois problem.


With the informations given by the line 119, one can construct a polynomial with coefficients in a number field with Galois 10T39.

 

> load galpols;                        
Loading "/usr/local/magma/libs/galpols/galpols"
> f:=PolynomialWithGaloisGroup(12,293);
> N<a>:=NumberField(f);                                                    
> PRN<x>:=PolynomialRing(N);           
> Factorization(PRN!f);     
[
    <x - a, 1>,
    <x + a, 1>,
    <x^10 + (a^2 - 13)*x^8 + (a^4 - 13*a^2 + 65)*x^6 + (a^6 - 13*a^4 + 65*a^2 - 
        156)*x^4 + (a^8 - 13*a^6 + 65*a^4 - 156*a^2 + 181)*x^2 + a^10 - 13*a^8 + 
        65*a^6 - 156*a^4 + 181*a^2 - 86, 1>
]

The third polynomial given by Magma after the factorisation has Galois group equals to 10T39.


This document was translated from a Documented Magma Code to LATEX by DMC2TEX beta0.1 version.


This document was translated from LATEX by HEVEA.