Computation Schemes for Splitting Fields of Polynomials ISSAC'09

Sébastien Orange¹, Guénaël Renault² and Kazuhiro Yokoyama³

1: Université du Havre, France 2: UPMC, INRIA/LIP6 SALSA Project, France 3: Department of Mathematics, Rikkyo University, Japan

July, 2009, Seoul, Korea

Part I

Introduction

The Splitting Field of a Polynomial

Let $f \in \mathbb{Z}[x]$ be a monic irreducible polynomial with degree *n* and $\underline{\alpha} = \{\alpha_1, \ldots, \alpha_n\}$ a set of its roots.

Representation of \mathbb{Q}_f :

 $\mathbb{Q}[x_1,\ldots,x_n]/\mathcal{I}$

where \mathcal{I} is the splitting ideal defined by

 $\mathcal{I} = \{ \boldsymbol{R} \in \mathbb{Q}[\boldsymbol{x}_1, \dots, \boldsymbol{x}_n] \mid \boldsymbol{R}(\underline{\alpha}) = \boldsymbol{0} \}$

(Note: \mathcal{I} depends on the numbering of the roots $\underline{\alpha}$)

The Splitting Field of a Polynomial

The splitting ideal \mathcal{I} is generated by the following triangular Gröbner basis \mathcal{T} (LEX $x_1 < x_2 < \ldots < x_n$)

$$\begin{array}{ll} g_1(x_1) = f(x_1) = x_1^{d_1} + r_1(x_1) & \deg_{x_1}(r_1) < d_1 \\ g_2(x_1, x_2) = x_2^{d_2} + r_2(x_1, x_2) & \deg_{x_2}(r_2) < d_2 \\ \vdots & & \end{array}$$

$$g_n(x_1,\ldots,x_n) = x_n^{d_n} + r(x_1,\ldots,x_n) \quad \deg_{x_n}(r_n) < d_n$$

 $g_i(\alpha_1, \ldots, \alpha_{i-1}, x_i)$ minimal polynomial of α_i over $\mathbb{Q}(\alpha_1, \ldots, \alpha_{i-1})$:

The Galois Group of a Polynomial

The \mathbb{Q} -automorphism group of \mathbb{Q}_f can be represented by a subgroup G_f of S_n , the Galois group of f:

$$\begin{aligned} \mathbb{Q}_f = \mathbb{Q}(\underline{\alpha}) & \longrightarrow & \mathbb{Q}_f = \mathbb{Q}(\underline{\alpha}) \\ \alpha_i & \longmapsto & \alpha_j \end{aligned}$$

The permutation group G_f stabilizes the ideal \mathcal{I} :

 $G_f = \{ \sigma \in S_n \, | \, \forall R \in \mathcal{I}, \sigma \cdot R := R(x_{\sigma(1)}, \ldots, x_{\sigma(n)}) \in \mathcal{I} \}$

The variety of \mathcal{I} is defined by G_f action:

$$V(\mathcal{I}) = G_f \cdot (\alpha_1, \ldots, \alpha_n) = \{ (\alpha_{\sigma(1)}, \ldots, \alpha_{\sigma(n)}) | \sigma \in G_f \}$$

(Note: G_f depends on the numbering of the roots $\underline{\alpha}$)

How to use some knowledges about the Galois action in order to compute efficiently the splitting field?

- Yokoyama, A modular method for computing the Galois groups of polynomials. MEGA 1996
- Fernandez-Ferreiros, Gomez-Molleda, Gonzalez-Vega, Partial solvability by radicals, ISSAC 2002.
- Lederer, M., Explicit constructions in splitting fields of polynomials. 2004
- R., Yokoyama, A modular method for computing the splitting field of a polynomial. ANTS 2006
- Diaz-Toca, Dynamic Galois Theory and Gröbner Basis, ACA 2008
- Valibouze, Sur les relations entre les racines d'un polynôme, Acta Arithmetica 2008.
- R., Yokoyama, Multi-modular algorithm for computing the splitting field of a polynomial, ISSAC 2008

[R., Yokoyama ANTS'06][R., Yokoyama ISSAC'08]: Interpolation with a careful treatment on reducing computational difficulty (introduction of the computation schemes).

 \Rightarrow The total efficiency of the computation relies on the computation scheme !

Computation Scheme: Problematic

Computation scheme is not an invariant of the conjugacy class of G_{f} !

632 coefficients to compute

8 coefficients to compute

 \Rightarrow How to compute a conjugate of G_f with the best computation scheme?

 \Rightarrow How to compute a conjugate of G_f with the best computation scheme?

[R., Yokoyama ANTS'06]: brute force inspection of all the $|S_n : N_{S_n}(G_f)| (\sim n!$ when G_f small) different conjugates of G_f .

- Combinatorial problem when |G| is moderate $(|S_n : N_{S_n}(G_f)| >> |G|)$, inefficient for n > 7
- Use of a data base to store the good conjugates

New contribution: Efficient algorithm for this computation.

- Based on the study of the orbits of G_f
- Theoretical studies for families of permutation groups
- $\bullet\,$ We do not need of a data anymore for the computation of ${\cal I}$

Part II

Computation Scheme: Definition

⇒[R., Yokoyama ANTS'06] [R. ISSAC'06]

Be given a permutation group G, a computation scheme consists of a data that guides the computation of the splitting field of a polynomial with Galois group G by indeterminate coefficients method.

- reducing the number of polynomials to compute
- reducing the number of indeterminate coefficients to compute

c(G) will denote the number of coefficients to compute in T by applying the corresponding computation scheme.

Shape of g_i 's and ${\mathcal T}$

From the knowledge of *G* we obtain:

FieldsGalois GroupOrbits \mathbb{Q} G $\{1, \dots, n\}$ $\mathbb{Q}(\alpha_1)$ $\operatorname{Stab}_G(\{1\})$ $\{1\}, \{i_1 = 2, \dots, i_{d_2}\}, \dots$ $| d_2$ $| \\ \mathbb{Q}(\alpha_1, \alpha_2)$ $[\\ \mathbb{Stab}_G(\{1, 2\})$ $\{1\}, \{2\}, \{i_1 = 3, \dots, i_{d_3}\}, \dots$ \vdots \vdots \vdots \vdots

 $d_i = |\operatorname{Stab}_G(\{1, \ldots, i-1\})| / |\operatorname{Stab}_G(\{1, \ldots, i\})|.$

$$g_i = x_i^{d_i} + \sum_{0\leqslant k_j < d_j} c x_1^{k_1} x_2^{k_2} \cdots x_i^{k_i}$$

Reducing the number of polynomials to compute: Cauchy modules

By inspecting the corresponding orbit of a polynomial g_i we may deduce another polynomial by generalized Cauchy module (divided difference) computation.

 $\begin{array}{c} \textbf{Cauchy} \\ \left\{ \begin{array}{l} g_1 = x_1^{d_1} + \dots \\ \vdots & \text{Corresponding orbit} \\ g_i = x_i^{d_i} + \dots & \longrightarrow \{j_1 = i < j_2 < \dots < j_k < \dots < j_{d_i}\} \\ \vdots & \text{Let } \ell = j_k \\ g_\ell = x_\ell^{d_\ell} + \dots \\ \vdots \end{array} \right. \end{array}$

If $d_{\ell} = d_i - k + 1$ the Cauchy technique can be applied. $\Rightarrow g_i(x_i, \alpha_{i-1}, \dots, \alpha_1)$ vanishes on α_{ℓ} for $\ell \in \{j_1 = i, j_2, \dots, j_{d_i}\}$.

Reducing the number of polynomials to compute: Transporters

As *G* will be the stabilizer of the ideal generated by the set under construction, we can use its action.

If $d_j = d_i = d$ and $\exists \sigma \in G$ s.t. $\sigma(i) = j$ and $Max(\sigma(E_i)) = j$ then f_j is deduced freely from f_i .

Reducing the number of coefficients to compute: *i*-relations

Generically g_i depends on $x_1, \ldots, x_1 \Rightarrow d_1 d_2 \cdots d_i$ indeterminate coefficients.

Definition

The computation scheme of the permutation group G is defined by the following data:

- the degree d_i of the greatest variable in each polynomial in T;
- mathematical objects (shape) computed by Cauchy and Transporters techniques;
- 3 the minimal *i*-relation of each polynomial in T that can not be obtained by the preceding techniques.

 \Rightarrow Mainly depends on the orbits of the successive stabilizers of G.

Part III

Fast Computation of Computation Schemes: Orbits Tree

 \Rightarrow We do not consider the linear factors \Rightarrow non redundant bases of G.

⇒We do not need to inspect the $|S_6 : N_{S_6}(G)| = 60$ different conjugates of *G* but only 2 branches of the orbit tree !

From a Branch to a Computation Scheme

From a Branch to a Computation Scheme

Linear relations first ⇒ best gain with the Cauchy technique
We obtain sparse *i*-relation, but may be not the sparsest ones.

Sieving the orbits tree

In the same way, we can inspect the orbits tree for applying transporter technique and finding the sparsest *i*-relations.

Theoretical cost

The theoretical complexity is not so good : *poly*(|*G*|), but

- The total complexity of the computation of the splitting field is not dominated by this step.
- For moderate size groups this complexity is $<< |S_n : N_{S_n}(G)|$.
- In practice, the algorithm is very efficient!

Theoretical Tricks

By using group properties we can cut some branches in the tree (primitivity, transitivity, solvability, etc.)

- Alternate, Symmetric grps: hight transitivity \Rightarrow Cauchy technique.
- Cyclic groups: CS can be easily deduced without any computation
- Dihedral groups ([R. ISSAC'06]): idem
- Wreath products (This work): idem
- We can recursively use this results for cutting branches during the tree analysis.

Comp. Schemes Timings (Magma 2.14, 32 bits, Intel 2.5GHz)

For almost all the groups *G* of degree ≤ 15 and $|G| \leq 10000$, the timings are too small (average < 1 second) to be really measured! Only few examples gave "*long*" timings (< 5 seconds). They appear when orbits tree has a large number of branches (< 750).

Splitting Fields Timings (Magma 2.14, 32 bits, Intel 2.5GHz)

group	<i>G</i>	Galois Grp	Comp. Schm.	Interpol+Lift	Magma	Lederer
$7T_6$	2520	0.06	0.00	52.5	>	1508.3
8 <i>T</i> ₃₂	96	0.16	0.00	0.72	33.5	12.5
8 <i>T</i> ₄₂	288	0.1	0.00	0.18	17.9	20.08
8 <i>T</i> ₄₇	1152	0.07	0.00	0.5	422.3	238.3
9 <i>T</i> ₂₅	324	0.42	0.01	4.07	106.1	67.9
9 <i>T</i> ₂₇	504	0.82	0.00	116.3	>	397.3
9 <i>T</i> ₃₁	1296	0.32	0.01	0.5	>	403.3
9 <i>T</i> ₃₂	1512	0.78	0.00	753.2	>>	1967.1

(>,>>): we wait at least (600, 2000) seconds

Conclusion

- Fill the gap between Galois group computation and the splitting field computation without data basis.
- Better knowledge for the use of the symmetries (extrem case) in the computation of Gröbner bases.

