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Introduction
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The Splitting Field of a Polynomial

Let f ∈ Z[x ] be a monic irreducible polynomial with degree n and
α = {α1, . . . , αn} a set of its roots.

Aim
Compute a representation of Qf = Q(α) the Splitting Field of f .

Representation of Qf :
Q[x1, . . . , xn]/I

where I is the splitting ideal defined by

I = {R ∈ Q[x1, . . . , xn] |R(α) = 0}

(Note: I depends on the numbering of the roots α)
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The Splitting Field of a Polynomial

The splitting ideal I is generated by the following triangular Gröbner
basis T (LEX x1 < x2 < . . . < xn)





g1(x1) = f (x1) = xd1
1 + r1(x1) degx1

(r1) < d1

g2(x1, x2) = xd2
2 + r2(x1, x2) degx2

(r2) < d2
...
gn(x1, . . . , xn) = xdn

n + r(x1, . . . , xn) degxn
(rn) < dn

gi(α1, . . . , αi−1, xi) minimal polynomial of αi over Q(α1, . . . , αi−1) :





g1(x1) = xd1
1 + r1(x1)

g2(α1, x2) = xd2
2 + r2(α1, x2)

...
gn(α1, α2, . . . , xn) = xdn

n + r(α1, α2, . . . , xn)

Q

Q(α1)

Q(α1, α2)

Qf = Q(α1, α2, . . . , αn)

...Q(α1, α2, . . . , αn−1)
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The Galois Group of a Polynomial

The Q-automorphism group of Qf can be represented by a subgroup
Gf of Sn, the Galois group of f :

Qf = Q(α) −→ Qf = Q(α)

αi 7−→ αj

The permutation group Gf stabilizes the ideal I:

Gf = {σ ∈ Sn | ∀R ∈ I, σ · R := R(xσ(1), . . . , xσ(n)) ∈ I}

The variety of I is defined by Gf action:

V (I) = Gf · (α1, . . . , αn) = {(ασ(1), . . . , ασ(n)) |σ ∈ Gf}

(Note: Gf depends on the numbering of the roots α)
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Related works

How to use some knowledges about the Galois action in order to
compute efficiently the splitting field?

Yokoyama, A modular method for computing the Galois groups of
polynomials. MEGA 1996
Fernandez-Ferreiros, Gomez-Molleda, Gonzalez-Vega, Partial
solvability by radicals, ISSAC 2002.
Lederer, M., Explicit constructions in splitting fields of polynomials.
2004
R., Yokoyama, A modular method for computing the splitting field
of a polynomial. ANTS 2006
Diaz-Toca, Dynamic Galois Theory and Gröbner Basis, ACA 2008
Valibouze, Sur les relations entre les racines d’un polynôme, Acta
Arithmetica 2008.
R., Yokoyama, Multi-modular algorithm for computing the splitting
field of a polynomial, ISSAC 2008

6/23



Computation of the set T

[ R., Yokoyama ANTS’06][ R., Yokoyama ISSAC’08]: Interpolation
with a careful treatment on reducing computational difficulty
(introduction of the computation schemes).

Input Computation Scheme Computation Output

f

Galois 
Group 

Computation

Gf · (α1, . . . , αn)
mod p





g1(x1)
g2(x1, x2)
...
gn(x1, . . . , xn)

The triangular set

C





g1 = x8
1 + . . .

g2 = x6
2 + . . .

g3 = x4
3 + . . .

g4 = x2
4 + . . .

g5 = x1
5 + . . .

g6 = x1
6 + . . .

g7 = x1
7 + . . .

g8 = x1
8 + . . .

T

From the Galois group ∑
cix

k1
1 · · · xkn

n

Form of gi =

Interpolation
+

Hensel Lift

gi

⇒The total efficiency of the computation relies on the computation
scheme !
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Computation Scheme: Problematic

Computation scheme is not an invariant of the conjugacy class of Gf !





g1 = x8
1 + . . .

g2 = x6
2 + . . .

g3 = x4
3 + . . .

g4 = x2
4 + . . .

g5 = x1
5 + . . .

g6 = x1
6 + . . .

g7 = x1
7 + . . .

g8 = x1
8 + . . .





g1 = x8
1 + . . .

g2 = x1
2 + . . .

g3 = x6
3 + . . .

g4 = x1
4 + . . .

g5 = x4
5 + . . .

g6 = x1
6 + . . .

g7 = x2
7 + . . .

g8 = x1
8 + . . .

632 coefficients to compute 8 coefficients to compute

G1 conjugates to G2

⇒How to compute a conjugate of Gf with the best computation
scheme?
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Computation Scheme: Problematic

⇒How to compute a conjugate of Gf with the best computation
scheme?

[ R., Yokoyama ANTS’06]: brute force inspection of all the
|Sn : NSn(Gf )| (∼ n! when Gf small) different conjugates of Gf .

Combinatorial problem when |G| is moderate
(|Sn : NSn(Gf )| >> |G|), inefficient for n > 7
Use of a data base to store the good conjugates

New contribution: Efficient algorithm for this computation.
Based on the study of the orbits of Gf

Theoretical studies for families of permutation groups
We do not need of a data anymore for the computation of I
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Part II

Computation Scheme: Definition
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The principle of the computation scheme

⇒[R., Yokoyama ANTS’06] [R. ISSAC’06]

Be given a permutation group G, a computation scheme consists of a
data that guides the computation of the splitting field of a polynomial
with Galois group G by indeterminate coefficients method.

reducing the number of polynomials to compute
reducing the number of indeterminate coefficients to compute

c(G) will denote the number of coefficients to compute in T by
applying the corresponding computation scheme.
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Shape of gi ’s and T
From the knowledge of G we obtain:

Q

Q(α1)

Q(α1, α2)...

Fields

G

StabG({1})

StabG({1, 2})

Galois Group Orbits

{1,. . . ,n}
{1}, {i1 = 2, . . . , id2}, . . .

{1}, {2}, {i1 = 3, . . . , id3}, . . .
d2

d1 = n

...
...

di = |StabG({1, . . . , i − 1})|/|StabG({1, . . . , i})| .

gi = xdi
i +

∑

06kj<dj

cxk1
1 xk2

2 · · · x
ki
i
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Reducing the number of polynomials to compute:
Cauchy modules

By inspecting the corresponding orbit of a polynomial gi we may
deduce another polynomial by generalized Cauchy module (divided
difference) computation.





g1 = xd1
1 + . . .

...

gi = xdi
i + . . .

...

g! = xd!

! + . . .

...

Cauchy {j1 = i < j2 < · · · < jk < · · · < jdi}

Let ! = jk

Corresponding orbit

If d` = di − k + 1 the Cauchy technique can be applied.
⇒gi(xi , αi−1, . . . , α1) vanishes on α` for ` ∈ {j1 = i , j2, . . . , jdi}.
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Reducing the number of polynomials to compute:
Transporters

As G will be the stabilizer of the ideal generated by the set under
construction, we can use its action.

σ





g1 = xd1
1 + . . .

...

gi(XEi
) = xd

i + r(XEi
)

...

gj = xd
j + . . . = σ.fi

...

If dj = di = d and ∃σ ∈ G s.t. σ(i) = j and Max(σ(Ei)) = j then fj is
deduced freely from fi .
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Reducing the number of coefficients to compute:
i-relations

Generically gi depends on x1, . . . , x1 ⇒d1d2 · · · di indeterminate
coefficients.

Q(α1, . . . ,αi−1,αi)

Q(α1, . . . ,αi−1)

Q(αe1, . . . ,αes)

Q

Q(αe1, . . . ,αes,αi)
di

di

d1 · · ·di−1
gi = xdi

i + ri(xe1 , . . . , xes , xi)

D(E) coefficients indéterminés

D(E)

E = {e1, . . . ,es, i} ⊂ {1, . . . , i}
The cardinal of

StabG({E \ {i}})-orbit of i is di
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Computation Scheme: Definition

Definition
The computation scheme of the permutation group G is defined by the
following data:

1 the degree di of the greatest variable in each polynomial in T ;
2 mathematical objects (shape) computed by Cauchy and

Transporters techniques;
3 the minimal i-relation of each polynomial in T that can not be

obtained by the preceding techniques.

⇒Mainly depends on the orbits of the successive stabilizers of G.
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Part III

Fast Computation of Computation Schemes: Orbits
Tree
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Tower of subfields and orbits tree

⇒We do not consider the linear factors⇒non redundant bases of G.

Q

Q(α1)

Q(α1, α2)

Fields Orbits

{1, . . . , 6}

{1}, {2, 3}, {4}, {5, 6}

{1}, {2}, . . . , {6}

2

6

Q(α1, α5)

2

{1}, {2}, . . . , {6}

⇒We do not need to inspect the |S6 : NS6(G)| = 60 different
conjugates of G but only 2 branches of the orbit tree !
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From a Branch to a Computation Scheme

{1, . . . , 6}

{1}, {5}, {6}, {2, 3, 4}

{1}, {5}, {6}, {2}, {3, 4}

{1}, {5}, {6}, {2}, {3}, {4}

g1(x1) (1, 1) 6

g2(x2, x1) (2, 5) 1
g3(x3, x1) (3, 6) 1
g4(x4, x1) (4, 2) 3

g5(x5, x4, x1) (5, 3) 2

g6(x6, x5, x4, x1) (6, 4) 1
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From a Branch to a Computation Scheme

{1, . . . , 6}

{1}, {5}, {6}, {2, 3, 4}

{1}, {5}, {6}, {2}, {3, 4}

{1}, {5}, {6}, {2}, {3}, {4}

g1(x1) (1, 1) 6

g2(x2, x1) (2, 5) 1
g3(x3, x1) (3, 6) 1
g4(x4, x1) (4, 2) 3

g5(x5, x4, x1) (5, 3) 2

g6(x6, x5, x4, x1) (6, 4) 1

Linear relations first⇒ best gain with the Cauchy technique
We obtain sparse i-relation, but may be not the sparsest ones.
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From the orbits tree to the best Computation Scheme

Sieving the orbits tree
In the same way, we can inspect the orbits tree for applying transporter
technique and finding the sparsest i-relations.

Theoretical cost
The theoretical complexity is not so good : poly(|G|), but

The total complexity of the computation of the splitting field is not
dominated by this step.
For moderate size groups this complexity is << |Sn : NSn(G)|.
In practice, the algorithm is very efficient!
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Cutting branches

Theoretical Tricks
By using group properties we can cut some branches in the tree
(primitivity, transitivity, solvability, etc.)

Alternate, Symmetric grps: hight transitivity⇒Cauchy technique.
Cyclic groups: CS can be easily deduced without any computation
Dihedral groups ([R. ISSAC’06]): idem
Wreath products (This work): idem
We can recursively use this results for cutting branches during the
tree analysis.
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Experimental results

Comp. Schemes Timings (Magma 2.14, 32 bits, Intel 2.5GHz)
For almost all the groups G of degree 6 15 and |G| 6 10000, the
timings are too small (average < 1 second) to be really measured!
Only few examples gave ”long” timings (< 5 seconds). They appear
when orbits tree has a large number of branches (< 750).

Splitting Fields Timings (Magma 2.14, 32 bits, Intel 2.5GHz)
group |G| Galois Grp Comp. Schm. Interpol+Lift Magma Lederer

7T6 2520 0.06 0.00 52.5 > 1508.3
8T32 96 0.16 0.00 0.72 33.5 12.5
8T42 288 0.1 0.00 0.18 17.9 20.08
8T47 1152 0.07 0.00 0.5 422.3 238.3
9T25 324 0.42 0.01 4.07 106.1 67.9
9T27 504 0.82 0.00 116.3 > 397.3
9T31 1296 0.32 0.01 0.5 > 403.3
9T32 1512 0.78 0.00 753.2 >> 1967.1

(>,>>): we wait at least (600,2000) seconds
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Conclusion

Fill the gap between Galois group computation and the splitting
field computation without data basis.
Better knowledge for the use of the symmetries (extrem case) in
the computation of Gröbner bases.

Input Computation Scheme Computation Output

f

Galois 
Group 

Computation

Gf · (α1, . . . , αn)
mod p





g1(x1)
g2(x1, x2)
...
gn(x1, . . . , xn)

The triangular set

C





g1 = x8
1 + . . .

g2 = x6
2 + . . .

g3 = x4
3 + . . .

g4 = x2
4 + . . .

g5 = x1
5 + . . .

g6 = x1
6 + . . .

g7 = x1
7 + . . .

g8 = x1
8 + . . .

T

From the Galois group ∑
cix

k1
1 · · · xkn

n

Form of gi =

Interpolation
+

Hensel Lift

gi
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