1. Implementation of the fault discrimination algorithms presented in
Nathalie Verdi\303\250re and S\303\251bastien Orange. Diagnosability in the case of multifaults in nonlinear models. Journal of Process Control, 69, 2018.
These algorithms use the exhaustive summary of a parametrized dynamical system.
From an exhausive summary, they return a vector of algebraic polynomials, called Algebraic signature, and a precomputed table of this vector.
From estimation of the exhaustive summary and the knowledge of the system parameters, an estimation of the algebraic signature can be performed and the comparison of this last estimation with these precomputed tables can permit the discrimination of one or more faults acting on the system.In the considered system, the single faults, f1, f2, f3... can be seen as supplementary parameters which are equal to 0 when no fault is acting on the system.
When one or more single faults are acting simultamously on the system, we use the term multiple fault. For exemple, the multiple fault [f1, f2] is acting if f1<>0, f2<>0 and if the values of all the other single faults is 0.1.1 Procedure AlgebraicSignature Calling sequence
AlgebraicSignatureLUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYrLUkobWZlbmNlZEdGJDYkLUYjNiktSSNtaUdGJDYnUShJT0NvZWZmRicvJSdpdGFsaWNHUSV0cnVlRicvJStleGVjdXRhYmxlR0Y2LyUwZm9udF9zdHlsZV9uYW1lR1EpMkR+SW5wdXRGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYvUSIsRidGN0Y5L0Y9USdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGNi8lKXN0cmV0Y2h5R0ZHLyUqc3ltbWV0cmljR0ZHLyUobGFyZ2VvcEdGRy8lLm1vdmFibGVsaW1pdHNHRkcvJSdhY2NlbnRHRkcvJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4zMzMzMzMzZW1GJy1GQDYvUSJ+RidGN0Y5RkNGRS9GSUZHRkpGTEZORlBGUkZUL0ZYRlYtRjE2J1EwbF9zaW5nbGVfZmF1bHRzRidGNEY3RjlGPEY3RjlGQ0ZDLUYxNiNRIUYnLUknbXNwYWNlR0YkNiYvJSdoZWlnaHRHUSYwLjBleEYnLyUmd2lkdGhHRlYvJSZkZXB0aEdGZG8vJSpsaW5lYnJlYWtHUShuZXdsaW5lRictRkA2LUZmbkZDRkVGZ25GSkZMRk5GUEZSRlRGaG5GX28tRjE2J1EqQXJndW1lbnRzRicvJSVib2xkR0Y2L0Y1RkcvRj1RJWJvbGRGJy8lK2ZvbnR3ZWlnaHRHRmVwRjdGOUZDIOCoeff : the list of coefficients of an exhaustive summary (composed of polynomials whose indeterminates are parameters and single faults);
l_single_faults: the list of the possible single faults supposed to be equal to 0 when no faults occurs.
Description
This procedure returns a list of polynomials whose indeterminates are the parameters and the components of the exhaustive summary given as inputs;
Each of these polynomials does not vanish when at least one multiple fault is acting and vanishes when at least an other multiple fault is acting.JSFHLUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzZpXG0tSSNtaUdGJDYjUSFGJy1JJ21zcGFjZUdGJDYmLyUnaGVpZ2h0R1EmMC4wZXhGJy8lJndpZHRoR1EmMC4wZW1GJy8lJmRlcHRoR0Y0LyUqbGluZWJyZWFrR1ElYXV0b0YnLUYsNihRM0FsZ2VicmFpY1NpZ25hdHVyZUYnLyUnZmFtaWx5R1EsQ291cmllcn5OZXdGJy8lJ2l0YWxpY0dRJXRydWVGJy8lK2ZvcmVncm91bmRHUStbMTIwLDAsMTRdRicvJTBmb250X3N0eWxlX25hbWVHUSxNYXBsZX5JbnB1dEYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNjBRIn5GJ0ZARkZGSS9GTVEnbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRlcvJSlzdHJldGNoeUdGVy8lKnN5bW1ldHJpY0dGVy8lKGxhcmdlb3BHRlcvJS5tb3ZhYmxlbGltaXRzR0ZXLyUnYWNjZW50R0ZXLyUnbHNwYWNlR0Y3LyUncnNwYWNlR0Y3LUZQNjBRKiZjb2xvbmVxO0YnRkBGRkZJRlNGVUZYRlpGZm5GaG5Gam5GXG8vRl9vUSwwLjI3Nzc3NzhlbUYnL0Zhb0Zmb0ZPLUZQNjJRJXByb2NGJ0ZALyUlYm9sZEdGRUZGRkkvRk1RJWJvbGRGJy8lK2ZvbnR3ZWlnaHRHRl5wRlVGWEZaRmZuRmhuRmpuRlxvRl5vRmBvLUkobWZlbmNlZEdGJDYpLUYjNigtRiw2KFEoSU9Db2VmZkYnRkBGQ0ZGRklGTC1GUDYwUSIsRidGQEZGRklGU0ZVL0ZZRkVGWkZmbkZobkZqbkZcb0Zeby9GYW9RLDAuMzMzMzMzM2VtRidGTy1GLDYoUTBsX3NpbmdsZV9mYXVsdHNGJ0ZARkNGRkZJRkwvJStleGVjdXRhYmxlR0ZXRlNGQEZbcEZGRklGXXBGX3BGKy1GMDYmRjJGNUY4L0Y7UShuZXdsaW5lRidGLy1GUDYwUSIjRidGQEZGRklGU0ZVRlhGWkZmbkZobkZqbkZcb0Zeb0Zgby1GLDYoUWlvfklucHV0c346fip+YX5saXN0LH5JT0NvZWZmLH5vZn5jb2VmZmljaWVudHN+b2Z+dGhlfklucHV0fk91dHB1dH5wb2x5bm9taWFsc347RidGQEZDRkZGSUZMRmRxRi9GaHEtRiw2KFFlb35+fn5+fn5+fn4qfnRoZX5saXN0LH5sX3NpbmdsZV9mYXVsdHMsfm9mfmFsbH50aGV+cG9zc2libGV+c2luZ2xlfmZhdWx0c347RidGQEZDRkZGSUZMRmRxRi9GaHEtRiw2KFFecH5PdXRwdXR+On4qfkFufmFsZ2VicmFpY35zaWduYXR1cmUsfkFsZ1NpZ24sfmNvbnN0cnVjdGVkfmZyb21+dGhlfnRoZX5saXN0fklPQ29lZmYuRidGQEZDRkZGSUZMRmRxRi8tRlA2MlEmbG9jYWxGJ0ZARltwRkZGSUZdcEZfcEZVRlhGWkZmbkZobkZqbkZcb0Zeb0Zgb0ZPLUYsNihRMUxpc3RPZlBhcmFtZXRlcnNGJ0ZARkNGRkZJRkxGaXBGTy1GLDYoUTVMaXN0T2ZJT2NvZWZmaWNpZW50c0YnRkBGQ0ZGRklGTEZpcEZPLUYsNihRPkxpc3RNRl9Db3JyZXNwb25kaW5nR0JfSWRlYWxzRidGQEZDRkZGSUZMRmlwRk8tRiw2KFEjbWZGJ0ZARkNGRkZJRkxGaXBGTy1GLDYoUSVJX21mRidGQEZDRkZGSUZMRmlwRk8tRiw2KFElSl9tZkYnRkBGQ0ZGRklGTEZpcEZPLUYsNihRJkdCX21mRidGQEZDRkZGSUZMRmlwRk8tRiw2KFEnRW5zUG9sRidGQEZDRkZGSUZMRmlwRk8tRiw2KFErSWRlYWxJbnRlckYnRkBGQ0ZGRklGTEZpcEZPLUYsNihRKEFsZ1NpZ25GJ0ZARkNGRkZJRkxGaXBGTy1GLDYoUTNNdWx0aXBsZUZhdWx0c0xpc3RGJ0ZARkNGRkZJRkxGaXBGTy1GLDYoUSJTRidGQEZDRkZGSUZMRmlwRk8tRiw2KFEqU3lzdGVtX21mRidGQEZDRkZGSUZMRmlwRk8tRiw2KFEiaUYnRkBGQ0ZGRklGTC1GUDYwUSI7RidGQEZGRklGU0ZVRlxxRlpGZm5GaG5Gam5GXG9GXm9GZ29GZHFGL0ZPRk9GT0ZPRmdyRk9GYm9GTy1GYnA2Ky1GIzYmLUYsNihRI29wRidGQEZDRkZGSUZMLUZicDYpLUYjNiktRmJwNistRiM2JkZodS1GYnA2KS1GIzYmLUYsNihRJ2luZGV0c0YnRkBGQ0ZGRklGTC1GYnA2KS1GIzYlRmZwRmJxRlNGQEZbcEZGRklGXXBGX3BGYnFGU0ZARltwRkZGSUZdcEZfcEZicUZTRkBGW3BGRkZJRl1wRl9wLyUlb3BlbkdRInxmckYnLyUmY2xvc2VHUSJ8aHJGJ0ZPLUZQNjJRJm1pbnVzRidGQEZbcEZGRklGXXBGX3BGVUZYRlpGZm5GaG5Gam5GXG9GXm9GYG9GTy1GYnA2Ky1GIzYmRmh1LUZicDYpLUYjNiVGX3FGYnFGU0ZARltwRkZGSUZdcEZfcEZicUZTRkBGW3BGRkZJRl1wRl9wRl53RmF3RmJxRlNGQEZbcEZGRklGXXBGX3BGYnFGU0ZARltwRkZGSUZdcEZfcC9GX3dRIltGJy9GYndRIl1GJ0ZhdUZkcUYvRk9GT0ZPRk9GanJGT0Zib0ZPLUZicDYrLUYjNiYtRiw2KFEkc2VxRidGQEZDRkZGSUZMLUZicDYpLUYjNjItRiw2KFEkY2F0RidGQEZDRkZGSUZMLUZicDYpLUYjNigtRiw2KFElcGhpX0YnRkBGQ0ZGRklGTEZpcEZPRl51RmJxRlNGQEZbcEZGRklGXXBGX3BGaXBGT0ZedUZPLUZQNjBRIj1GJ0ZARkZGSUZTRlVGWEZaRmZuRmhuRmpuRlxvRmVvRmdvRk8tSSNtbkdGJDYnUSIxRidGQEZGRklGU0ZPLUZQNjBRIy4uRidGQEZGRklGU0ZVRlhGWkZmbkZobkZqbkZcby9GX29RLDAuMjIyMjIyMmVtRidGYG9GTy1GLDYoUSVub3BzRidGQEZDRkZGSUZMRmp2RmJxRlNGQEZbcEZGRklGXXBGX3BGYnFGU0ZARltwRkZGSUZdcEZfcEZfeEZheEZhdUZkcUYvRk9GT0ZPRk9GXXNGT0Zib0ZPLUZicDYrLUYjNiVGK0ZicUZTRkBGW3BGRkZJRl1wRl9wRl94RmF4RmF1RmRxRi9GT0ZPRk9GT0ZocS1GLDYoUWRvfkdlbmVyYXRpbmd+dGhlfmxpc3Qsfk11bHRpcGxlRmF1bHRzTGlzdCx+b2Z+YWxsfnRoZX5wb3NzaWJsZX5tdWx0aWZhdWx0c0YnRkBGQ0ZGRklGTEZkcUYvRk9GT0ZPRk9GZXRGT0Zib0ZPLUZicDYrRml6RkBGW3BGRkZJRl1wRl9wRl53RmF3RmF1RmRxRi9GT0ZPRk9GT0ZodEZPRmJvRk8tRiw2KFEpY29tYmluYXRGJ0ZARkNGRkZJRkwtRlA2MFEjOi1GJ0ZARkZGSUZTRlVGWEZaRmZuRmhuRmpuRlxvRl5vRmBvLUYsNihRKHN1YnNldHNGJ0ZARkNGRkZJRkwtRmJwNiktRiM2JkZndkZbeEZicUZTRkBGW3BGRkZJRl1wRl9wRmF1RmRxRi9GT0ZPRk9GTy1GUDYyUSZ3aGlsZUYnRkBGW3BGRkZJRl1wRl9wRlVGWEZaRmZuRmhuRmpuRlxvRl5vRmBvRk8tRlA2MlEkbm90RidGQEZbcEZGRklGXXBGX3BGVUZYRlpGZm5GaG5Gam5GXG9GXm9GYG9GT0ZodC1GYnA2Ky1GIzYlLUYsNihRKWZpbmlzaGVkRidGQEZDRkZGSUZMRmJxRlNGQEZbcEZGRklGXXBGX3BGX3hGYXhGTy1GUDYyUSNkb0YnRkBGW3BGRkZJRl1wRl9wRlVGWEZaRmZuRmhuRmpuRlxvRl5vRmBvRk9GZXRGT0Zib0ZPLUZicDYrLUYjNilGaHUtRmJwNiktRiM2JUZldEZicUZTRkBGW3BGRkZJRl1wRl9wRmlwRk8tRmJwNistRiM2JkZodS1GYnA2KS1GIzYnRmh0LUZicDYrLUYjNiUtRiw2KFEqbmV4dHZhbHVlRidGQEZDRkZGSUZMRmJxRlNGQEZbcEZGRklGXXBGX3BGX3hGYXgtRmJwNilGaXpGQEZbcEZGRklGXXBGX3BGYnFGU0ZARltwRkZGSUZdcEZfcEZicUZTRkBGW3BGRkZJRl1wRl9wRl94RmF4RmJxRlNGQEZbcEZGRklGXXBGX3BGXndGYXdGTy1GUDYyUSRlbmRGJ0ZARltwRkZGSUZdcEZfcEZVRlhGWkZmbkZobkZqbkZcb0Zeb0Zgb0ZPRmpcbEZhdUZkcUYvRk9GT0ZPRk9GaHEtRiw2KFFjb35Db21wdXRhdGlvbn5vZn5lbGltaW5hdGlvbn5pZGVhbHN+Y29ycmVzcG9uZGluZ350b35lYWNofm11bHRpcGxlfmZhdWx0LkYnRkBGQ0ZGRklGTEZkcUYvRk9GT0ZPRk8tRlA2MlEkZm9yRidGQEZbcEZGRklGXXBGX3BGVUZYRlpGZm5GaG5Gam5GXG9GXm9GYG9GT0Zgc0ZPLUZQNjJRI2luRidGQEZbcEZGRklGXXBGX3BGVUZYRlpGZm5GaG5Gam5GXG9GXm9GYG9GT0ZldEZPRmpcbEZkcUYvRk9GT0ZPRk9GT0ZPRk9GT0ZbdUZPRmJvRk9GZnBGTy1GUDYwUSomdW1pbnVzMDtGJ0ZARkZGSUZTRlVGWEZaRmZuRmhuRmpuRlxvRmJ6L0Zhb0ZjekZPRmpyRmF1RmRxRi9GT0ZPRk9GT0ZPRk9GT0ZPRlxfbEZPRl51Rk8tRlA2MlEjdG9GJ0ZARltwRkZGSUZdcEZfcEZVRlhGWkZmbkZobkZqbkZcb0Zeb0Zgb0ZPRmR6Rlt4Rk9GalxsRmRxRi9GT0ZPRk9GT0ZPRk9GT0ZPRk9GT0ZPRk8tRlA2MlEjaWZGJ0ZARltwRkZGSUZdcEZfcEZVRlhGWkZmbkZobkZqbkZcb0Zeb0Zgb0ZPLUYsNihRJmV2YWxiRidGQEZDRkZGSUZMLUZicDYpLUYjNiYtRiw2KFEnbWVtYmVyRidGQEZDRkZGSUZMLUZicDYpLUYjNilGX3EtRmJwNistRiM2JUZedUZicUZTRkBGW3BGRkZJRl1wRl9wRl94RmF4RmlwRk9GYHNGYnFGU0ZARltwRkZGSUZdcEZfcEZicUZTRkBGW3BGRkZJRl1wRl9wRk8tRlA2MlEldGhlbkYnRkBGW3BGRkZJRl1wRl9wRlVGWEZaRmZuRmhuRmpuRlxvRl5vRmBvRk9GW3VGT0Zib0ZPLUZicDYrLUYjNjFGaHUtRmJwNiktRiM2JUZbdUZicUZTRkBGW3BGRkZJRl1wRl9wRmlwRk9GXnktRmJwNiktRiM2KC1GLDYoUSVpbnZfRidGQEZDRkZGSUZMRmlwRk9GXnVGYnFGU0ZARltwRkZGSUZdcEZfcC1GUDYwUSIqRidGQEZGRklGU0ZVRlhGWkZmbkZobkZqbkZcby9GX29RLDAuMTY2NjY2N2VtRicvRmFvRmRibEZfcUZqYGxGT0ZiX2xGT0ZbekZicUZTRkBGW3BGRkZJRl1wRl9wRl94RmF4RitGZHFGL0ZPRk9GT0ZPRk9GT0ZPRk9GT0ZPRk9GTy1GUDYyUSVlbHNlRidGQEZbcEZGRklGXXBGX3BGVUZYRlpGZm5GaG5Gam5GXG9GXm9GYG9GT0ZbdUZPRmJvRk8tRmJwNistRiM2KkZodUZlYWxGaXBGT0ZfcUZqYGxGYnFGU0ZARltwRkZGSUZdcEZfcEZfeEZheEYrRmRxRi9GT0ZPRk9GT0ZPRk9GT0ZPRk9GT0ZPRk9GZl5sRk9GaV9sRmRxRi9GT0ZPRk9GT0ZPRk9GT0ZPRmZebEZPRmpcbEZhdUZkcUYvRk9GT0ZPRk9GT0ZPRk9GT0Zjc0ZPRmJvRk8tRiw2KFExUG9seW5vbWlhbElkZWFsc0YnRkBGQ0ZGRklGTEZjW2wtRiw2KFEwUG9seW5vbWlhbElkZWFsRidGQEZDRkZGSUZMRmVhbEZhdUZkcUYvRk9GT0ZPRk9GT0ZPRk9GT0Zmc0ZPRmJvRk9GXWNsRmNbbC1GLDYoUTFFbGltaW5hdGlvbklkZWFsRidGQEZDRkZGSUZMLUZicDYpLUYjNihGY3NGaXBGTy1GYnA2Ky1GIzYqRmh1LUZicDYpLUYjNiVGZ3JGYnFGU0ZARltwRkZGSUZdcEZfcEZpcEZPRmh1LUZicDYpLUYjNiVGanJGYnFGU0ZARltwRkZGSUZdcEZfcEZicUZTRkBGW3BGRkZJRl1wRl9wRl53RmF3RmJxRlNGQEZbcEZGRklGXXBGX3BGYXVGZHFGL0ZPRk9GT0ZPRk9GT0ZPRk9GaXNGT0Zib0ZPLUYsNihRKUdyb2VibmVyRidGQEZDRkZGSUZMRmNbbC1GLDYoUSZCYXNpc0YnRkBGQ0ZGRklGTC1GYnA2KS1GIzYpRmZzRmlwRk8tRiw2KFElcGxleEYnRkBGQ0ZGRklGTC1GYnA2KS1GIzYqRmh1RmJkbEZpcEZPRmh1Rl5kbEZicUZTRkBGW3BGRkZJRl1wRl9wRmJxRlNGQEZbcEZGRklGXXBGX3BGYXVGZHFGL0ZPRk9GT0ZPRk9GT0ZPRk9GXXNGT0Zib0ZPLUZicDYrLUYjNilGaHUtRmJwNiktRiM2JUZdc0ZicUZTRkBGW3BGRkZJRl1wRl9wRmlwRk8tRmJwNistRiM2K0Zgc0ZpcEZPRmlzRmlwRk9GY3NGYnFGU0ZARltwRkZGSUZdcEZfcEZfeEZheEZicUZTRkBGW3BGRkZJRl1wRl9wRl94RmF4RmF1RmRxRi9GT0ZPRk9GT0ZmXmxGT0ZqXGxGYXVGZHFGL0ZPRk9GT0ZPRmhxLUYsNihRZnN+RGV0ZXJtaW5hdGlvbn5vZn5hfnNldCx+RW5zUG9sLH5vZn5hbGdlYnJhaWN+cmVsYXRpb25zfnZhbmlzaGluZ35mb3J+YXR+bGVhc3R+b25lfm11bHRpZmF1bHR+YW5kfm5vdH52YW5pc2hpbmd+Zm9yfmF0fmxlYXN0fm9uZX5tdWx0aWZhdWx0RidGQEZDRkZGSUZMRmRxRi9GT0ZPRk9GT0ZcdEZPRmJvRk8tRiw2KFEoYHVuaW9uYEYnRkBGQ0ZGRklGTC1GYnA2KS1GIzYmRmd4LUZicDYpLUYjNjEtRmJwNistRiM2JkZodS1GYnA2KS1GIzYnRl1zRmpgbC1GYnA2Ky1GIzYlLUZcejYnUSIyRidGQEZGRklGU0ZicUZTRkBGW3BGRkZJRl1wRl9wRl94RmF4RmJxRlNGQEZbcEZGRklGXXBGX3BGYnFGU0ZARltwRkZGSUZdcEZfcEZed0Zhd0ZpcEZPRl51Rk9GaHlGT0ZbekZPRl96Rk9GZHotRmJwNiktRiM2JkZdc0ZPRmJxRlNGQEZbcEZGRklGXXBGX3BGYnFGU0ZARltwRkZGSUZdcEZfcEZicUZTRkBGW3BGRkZJRl1wRl9wRmF1RmRxRi9GT0ZPRk9GT0ZfdEZPRmJvRk9GXWNsRmNbbC1GLDYoUSpJbnRlcnNlY3RGJ0ZARkNGRkZJRkwtRmJwNiktRiM2JkZneC1GYnA2KS1GIzY0Rl1jbEZjW2xGYGNsRmVnbEZpcEZPRl51Rk9GaHlGT0ZbekZPRl96Rk9GZHpGYGhsRmJxRlNGQEZbcEZGRklGXXBGX3BGYnFGU0ZARltwRkZGSUZdcEZfcEZhdUZkcUYvRk9GT0ZPRk9GaHEtRiw2KFFec35Qb2x5bm9taWFsc35vZn5FbnNQb2x+ZGlmZmVyaW5nfmZyb21+YX5tdWx0aXBsaWNhdGl2ZX5jb25zdGFudH5hcmV+cmVtb3ZlZC5+T3JkZXJlZH5hcmJpdHJhcmlseX50aGV5fmRlZmluZX5hbn5hbGdlYnJhaWN+c2lnbmF0dXJlRidGQEZDRkZGSUZMRmRxRi9GT0ZPRk9GT0ZidEZPRmJvRk9GXltsRmF1RmRxRi9GT0ZPRk9GT0ZcX2xGT0ZedUZPRmZfbEZPRmR6LUZicDYpLUYjNiVGXHRGYnFGU0ZARltwRkZGSUZdcEZfcEZPRmpcbEZPRmlfbEZPRmBcbEZPRlxgbC1GYnA2KS1GIzYoRl1jbEZjW2wtRiw2KFEwSWRlYWxNZW1iZXJzaGlwRidGQEZDRkZGSUZMLUZicDYpLUYjNilGXHRGamBsRmlwRk9GX3RGYnFGU0ZARltwRkZGSUZdcEZfcEZicUZTRkBGW3BGRkZJRl1wRl9wRk9GXmFsRk9GYnRGT0Zib0ZPLUZicDYrLUYjNi9GXHRGamBsLUZQNjBRIi9GJ0ZARkZGSUZTRlVGWC9GZW5GRUZmbkZobkZqbkZcb0ZjYmxGZWJsRmZkbEZjW2wtRiw2KFEzTGVhZGluZ0NvZWZmaWNpZW50RidGQEZDRkZGSUZMLUZicDYpLUYjNipGXHRGamBsRmlwRk9GYGVsLUZicDYpLUYjNiZGaHUtRmJwNiktRiM2JkZndi1GYnA2KS1GIzYmRlx0RmpgbEZicUZTRkBGW3BGRkZJRl1wRl9wRmJxRlNGQEZbcEZGRklGXXBGX3BGYnFGU0ZARltwRkZGSUZdcEZfcEZicUZTRkBGW3BGRkZJRl1wRl9wRmlwRk9GaHUtRmJwNiktRiM2JUZidEZicUZTRkBGW3BGRkZJRl1wRl9wRmJxRlNGQEZbcEZGRklGXXBGX3BGXndGYXdGT0ZmXmxGT0ZpX2xGT0ZmXmxGT0ZqXGxGYXVGZHFGL0ZPRk9GT0ZPRmJ0Rk9GYm8tRmJwNistRiM2JkZodUZcXG1GYnFGU0ZARltwRkZGSUZdcEZfcEZfeEZheEZhdUZkcUYvRk9GT0ZPRk9GaHEtRiw2KFFjcX5QcmludGluZyx+Zm9yfnRoZX51c2VyLH50aGV+bGlzdH5vZn50aGV+aW5wdXR+b3V0cHV0fnBvbHlub21pYWxzfnVzZWR+dG9+ZGVmaW5lfnRoZX5hbGdlYnJhaWN+c2lnbmF0dXJlRidGQEZDRkZGSUZMRmRxRi9GT0ZPRk9GTy1GLDYoUSdscHJpbnRGJ0ZARkNGRkZJRkwtRmJwNiktRiM2J0ZPRmh1LUZicDYpLUYjNiYtRiw2KFEnRXF1YXRlRidGQEZDRkZGSUZMLUZicDYpLUYjNihGY3hGaXBGT0ZmcEZicUZTRkBGW3BGRkZJRl1wRl9wRmJxRlNGQEZbcEZGRklGXXBGX3BGYnFGU0ZARltwRkZGSUZdcEZfcEZhdUZkcUYvRk9GT0ZPRk8tRiw2KFEra2VybmVsb3B0c0YnRkBGQ0ZGRklGTC1GYnA2KS1GIzYpLUYsNihRK3ByaW50Ynl0ZXNGJ0ZARkNGRkZJRkxGT0ZoeUZPLUYsNihGRUZARkNGRkZJRkxGYnFGU0ZARltwRkZGSUZdcEZfcEZhdUZkcUYvRk9GT0ZPRk8tRlA2MlEncmV0dXJuRidGQEZbcEZGRklGXXBGX3BGVUZYRlpGZm5GaG5Gam5GXG9GXm9GYG9GT0ZidEZkcUZPRmZebEZPRmhvLUZQNjBRIjpGJ0ZARkZGSUZTRlVGWEZaRmZuRmhuRmpuRlxvRmVvRmdvRmRxRi9GK0ZicUZT1.2 Procedure SingleFaultCharacterizationCalling sequence
LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYmLUkjbWlHRiQ2JVE8U2luZ2xlRmF1bHRDaGFyYWN0ZXJpemF0aW9uRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLyUrZXhlY3V0YWJsZUdGMS8lMGZvbnRfc3R5bGVfbmFtZUdRKTJEfklucHV0RicvRjNRJ25vcm1hbEYnLUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYyLUkobWZlbmNlZEdGJDYkLUYjNiwtSSNtaUdGJDYmUShBbGdTaWduRicvJSdpdGFsaWNHUSV0cnVlRicvJStleGVjdXRhYmxlR0Y2LyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi5RIixGJ0Y3L0Y6USdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGNi8lKXN0cmV0Y2h5R0ZELyUqc3ltbWV0cmljR0ZELyUobGFyZ2VvcEdGRC8lLm1vdmFibGVsaW1pdHNHRkQvJSdhY2NlbnRHRkQvJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4zMzMzMzMzZW1GJy1GPTYuUSJ+RidGN0ZARkIvRkZGREZHRklGS0ZNRk9GUS9GVUZTLUYxNiZRKGlvY29lZmZGJ0Y0RjdGOUY8RlctRjE2JlEwbF9zaW5nbGVfZmF1bHRzRidGNEY3RjlGNy8lMGZvbnRfc3R5bGVfbmFtZUdRKTJEfklucHV0RidGQEZALUYxNiNRIUYnLUknbXNwYWNlR0YkNiYvJSdoZWlnaHRHUSYwLjBleEYnLyUmd2lkdGhHRlMvJSZkZXB0aEdGZ28vJSpsaW5lYnJlYWtHUShuZXdsaW5lRictRmNvNiZGZW9GaG9Gam8vRl1wUSVhdXRvRictRjE2J1E8U2luZ2xlRmF1bHRDaGFyYWN0ZXJpemF0aW9uRidGNEY3RlxvRjktRiw2Ji1GIzYsLUYxNidGM0Y0RjdGXG9GOS1GPTYvRj9GN0Zcb0ZARkJGRUZHRklGS0ZNRk9GUUZULUY9Ni9GWUY3RlxvRkBGQkZaRkdGSUZLRk1GT0ZRRmVuLUYxNidGaG5GNEY3RlxvRjlGXHFGXnEtRjE2J0Zbb0Y0RjdGXG9GOUZccS1GMTYnUSVDb25kRidGNEY3RlxvRjlGQEY3RlxvRkBGX29GYm9GX3AtRj02LUZZRkBGQkZaRkdGSUZLRk1GT0ZRRmVuRl9vRmJvLUYxNidRKkFyZ3VtZW50c0YnLyUlYm9sZEdGNi9GNUZEL0Y6USVib2xkRicvJStmb250d2VpZ2h0R0ZgckY3RlxvRkA=
* AlgSign: the algebraic signature returned by the procedure AlgebraicSignature or a sublist of it;
* LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzZELUkjbWlHRiQ2JVEoaW9jb2VmZkYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi5RIn5GJ0YvRjIvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRjsvJSlzdHJldGNoeUdGOy8lKnN5bW1ldHJpY0dGOy8lKGxhcmdlb3BHRjsvJS5tb3ZhYmxlbGltaXRzR0Y7LyUnYWNjZW50R0Y7LyUnbHNwYWNlR1EmMC4wZW1GJy8lJ3JzcGFjZUdGSi1GNjYuUSI6RidGL0YyRjlGPEY+RkBGQkZERkYvRklRLDAuMjc3Nzc3OGVtRicvRkxGUUY1LUYsNiVRJHRoZUYnL0YwRjsvRjNRJ25vcm1hbEYnLUY2Ni1GOEZXRjlGPEY+RkBGQkZERkZGSEZLLUYsNiVRJWxpc3RGJ0ZWRldGWS1GLDYlUSNvZkYnRlZGV0ZZLUYsNiVRLWNvZWZmaWNpZW50c0YnRlZGV0ZZRmhuRllGU0ZZLUYsNiVRJklucHV0RidGVkZXRlktRiw2JVEnT3V0cHV0RidGVkZXRlktRiw2JVEscG9seW5vbWlhbHNGJ0ZWRldGWS1GLDYlUSV1c2VkRidGVkZXRlktRjY2LlEjdG9GJy8lJWJvbGRHRjtGV0Y5RjxGPkZARkJGREZGRkhGS0ZZLUYsNiVRKGNvbXB1dGVGJ0ZWRldGWS1GLDYlUShBbGdTaWduRidGL0YyLUY2Ni1RIjtGJ0ZXRjkvRj1GMUY+RkBGQkZERkZGSEZSLUknbXNwYWNlR0YkNiYvJSdoZWlnaHRHUSYwLjBleEYnLyUmd2lkdGhHRkovJSZkZXB0aEdGXnEvJSpsaW5lYnJlYWtHUShuZXdsaW5lRictRiw2I1EhRicvJTBmb250X3N0eWxlX25hbWVHUSVUZXh0RidGVw==* Cond: An optional argument which is a list, possibly empty, of contrains on the parameters and faults including, possibly, initial conditions.
Description
This procedure returns a list of 2-tuple composed of single fault(s) fi whose presence in a multiple fault can be charaterized by a non vanishing component, AlgSign[k], of AlgSign, i.e. such that fi<>0 iff AlgSign[k]<>0.LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzZnY2wtSSNtaUdGJDYoUTxTaW5nbGVGYXVsdENoYXJhY3Rlcml6YXRpb25GJy8lJ2ZhbWlseUdRLENvdXJpZXJ+TmV3RicvJSdpdGFsaWNHUSV0cnVlRicvJStmb3JlZ3JvdW5kR1ErWzEyMCwwLDE0XUYnLyUwZm9udF9zdHlsZV9uYW1lR1EsTWFwbGV+SW5wdXRGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYwUSJ+RidGL0Y1RjgvRjxRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0ZGLyUpc3RyZXRjaHlHRkYvJSpzeW1tZXRyaWNHRkYvJShsYXJnZW9wR0ZGLyUubW92YWJsZWxpbWl0c0dGRi8lJ2FjY2VudEdGRi8lJ2xzcGFjZUdRJjAuMGVtRicvJSdyc3BhY2VHRlUtRj82MFEqJmNvbG9uZXE7RidGL0Y1RjhGQkZERkdGSUZLRk1GT0ZRL0ZUUSwwLjI3Nzc3NzhlbUYnL0ZXRmZuRj4tRj82MlElcHJvY0YnRi8vJSVib2xkR0Y0RjVGOC9GPFElYm9sZEYnLyUrZm9udHdlaWdodEdGXm9GREZHRklGS0ZNRk9GUUZTRlYtSShtZmVuY2VkR0YkNiktRiM2MC1GLDYoUShBbGdTaWduRidGL0YyRjVGOEY7LUY/NjBRIixGJ0YvRjVGOEZCRkQvRkhGNEZJRktGTUZPRlFGUy9GV1EsMC4zMzMzMzMzZW1GJ0Y+LUYsNihRKGlvY29lZmZGJ0YvRjJGNUY4RjtGaW9GPi1GLDYoUTBsX3NpbmdsZV9mYXVsdHNGJ0YvRjJGNUY4RjtGaW9GPi1GLDYoUSVDb25kRidGL0YyRjVGOEY7RlgtRmJvNiktRiM2JS1GLDYjUSFGJy8lK2V4ZWN1dGFibGVHRkZGQkYvRjVGOEZCLyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnRl9xRkJGL0Zbb0Y1RjhGXW9GX29GXHEtSSdtc3BhY2VHRiQ2Ji8lJ2hlaWdodEdRJjAuMGV4RicvJSZ3aWR0aEdGVS8lJmRlcHRoR0Zcci8lKmxpbmVicmVha0dRKG5ld2xpbmVGJy1GaHE2JkZqcUZdckZfci9GYnJRJWF1dG9GJy1GPzYwUSIjRidGL0Y1RjhGQkZERkdGSUZLRk1GT0ZRRlNGVi1GLDYoUUx+SW5wdXRzOn4qfmFufmFsZ2VicmFpY35zaWduYXR1cmUsfkFsZ1NpZ24sRidGL0YyRjVGOEY7RmdxRmhyLUYsNihRYnF+fn5+fn5+fn4qfnRoZX5saXN0LH5pb2NvZWZmLH5vZn5jb2VmZmljaWVudHN+b2Z+dGhlfklucHV0fk91dHB1dH5wb2x5bm9taWFsc351c2VkfnRvfmNvbXB1dGV+QWxnU2lnbn47RidGL0YyRjVGOEY7RmdxRmRyRmhyLUYsNihRZG9+fn5+fn5+fn4qfnRoZX5saXN0LH5sX3NpbmdsZV9mYXVsdHMsfm9mfmFsbH50aGV+cG9zc2libGV+c2luZ2xlfmZhdWx0c347RidGL0YyRjVGOEY7RmdxRmRyRmhyLUYsNihRaXB+fn5+fn5+fn4qfnRoZX5saXN0LH5Db25kLH5vZn5jb25zdHJhaW5zfm9ufnBhcmFtZXRlcnN+aW5jbHVkaW5nfmV2ZW50dWFsfmluaXRpYWx+Y29uZGl0aW9uc347RidGL0YyRjVGOEY7RmdxRmhyLUYsNihRZXV+T3V0cHV0On50aGV+bGlzdCx+ZXZlbnR1YWxseX5lbXB0eSx+b2Z+MiYjODcyMjt0dXBsZX5jb21wb3NlZH5vZn5zaW5nbGV+ZmF1bHRzfmZfaX5hbmR+b2Z+YX5jb21wb25lbnQsfkFsZ1NpZ25faSx+b2Z+QWxnU2lnbn5zdWNofnRoYXR+Zl9pJiM4ODAwOzB+aWZmfkFsZ1NpZ25faSYjODgwMDswLkYnRi9GMkY1RjhGO0ZncUY+LUY/NjJRJmxvY2FsRidGL0Zbb0Y1RjhGXW9GX29GREZHRklGS0ZNRk9GUUZTRlZGPi1GLDYoUTFMaXN0T2ZQYXJhbWV0ZXJzRidGL0YyRjVGOEY7RmlvRj4tRiw2KFEqaW9jb2VmZmVxRidGL0YyRjVGOEY7RmlvRj4tRiw2KFFETFNpZ25Db21wb25lbnRBbmRGYXVsdENoYXJhY3Rlcml6ZWRGJ0YvRjJGNUY4RjtGaW9GPi1GLDYoUSNzZkYnRi9GMkY1RjhGO0Zpb0Y+LUYsNihRNUNoYXJhdGVyaXNhdGlvbkZvdW5kRidGL0YyRjVGOEY7RmlvRj4tRiw2KFEnQVNDb21wRidGL0YyRjVGOEY7RmlvRj4tRiw2KFEmZXFuczFGJ0YvRjJGNUY4RjtGaW9GPi1GLDYoUSZlcW5zMkYnRi9GMkY1RjhGO0Zpb0Y+LUYsNihRIlJGJ0YvRjJGNUY4RjtGaW9GPi1GLDYoUSJpRidGL0YyRjVGOEY7Rj4tRj82MFEiO0YnRi9GNUY4RkJGREZccEZJRktGTUZPRlFGU0ZnbkZncUZkckY+Rj5GPkY+LUYsNihRK2tlcm5lbG9wdHNGJ0YvRjJGNUY4RjstRmJvNiktRiM2KS1GLDYoUStwcmludGJ5dGVzRidGL0YyRjVGOEY7Rj4tRj82MFEiPUYnRi9GNUY4RkJGREZHRklGS0ZNRk9GUUZlbkZnbkY+LUYsNihGRkYvRjJGNUY4RjtGX3FGQkYvRltvRjVGOEZdb0Zfb0ZbdkZncUZkckY+Rj5GPkY+Rl10Rj5GWEY+LUZibzYrLUYjNiYtRiw2KFEjb3BGJ0YvRjJGNUY4RjstRmJvNiktRiM2Ki1GLDYoUSdpbmRldHNGJ0YvRjJGNUY4RjstRmJvNiktRiM2JUZfcEZfcUZCRi9GW29GNUY4Rl1vRl9vRj4tRj82MlEmbWludXNGJ0YvRltvRjVGOEZdb0Zfb0ZERkdGSUZLRk1GT0ZRRlNGVkY+LUZibzYrLUYjNiZGYXctRmJvNiktRiM2JUZicEZfcUZCRi9GW29GNUY4Rl1vRl9vRl9xRkJGL0Zbb0Y1RjhGXW9GX28vRmJxUSJ8ZnJGJy9GZXFRInxockYnRl9xRkJGL0Zbb0Y1RjhGXW9GX29GX3FGQkYvRltvRjVGOEZdb0Zfb0ZhcUZkcUZbdkZncUZkckY+Rj5GPkY+RmB0Rj5GWEY+LUYsNihRJ0VxdWF0ZUYnRi9GMkY1RjhGOy1GYm82KS1GIzYoRl9wRmlvRj4tRmJvNistRiM2Ji1GLDYoUSRzZXFGJ0YvRjJGNUY4RjstRmJvNiktRiM2Mi1GLDYoUSRjYXRGJ0YvRjJGNUY4RjstRmJvNiktRiM2KC1GLDYoUSVwaGlfRidGL0YyRjVGOEY7RmlvRj5GaHVGX3FGQkYvRltvRjVGOEZdb0Zfb0Zpb0Y+Rmh1Rj5GaHZGPi1JI21uR0YkNidRIjFGJ0YvRjVGOEZCRj4tRj82MFEjLi5GJ0YvRjVGOEZCRkRGR0ZJRktGTUZPRlEvRlRRLDAuMjIyMjIyMmVtRidGVkY+LUYsNihRJW5vcHNGJ0YvRjJGNUY4RjtGW3hGX3FGQkYvRltvRjVGOEZdb0Zfb0ZfcUZCRi9GW29GNUY4Rl1vRl9vRmFxRmRxRl9xRkJGL0Zbb0Y1RjhGXW9GX29GW3ZGZ3FGZHJGPkY+Rj5GPkZjdEY+RlhGPi1GYm82K0ZqcEYvRltvRjVGOEZdb0Zfb0ZhcUZkcUZbdkZncUZkckY+Rj5GPkY+LUY/NjJRJGZvckYnRi9GW29GNUY4Rl1vRl9vRkRGR0ZJRktGTUZPRlFGU0ZWRj5GZnRGPi1GPzYyUSNpbkYnRi9GW29GNUY4Rl1vRl9vRkRGR0ZJRktGTUZPRlFGU0ZWRj5GYnBGPi1GPzYyUSNkb0YnRi9GW29GNUY4Rl1vRl9vRkRGR0ZJRktGTUZPRlFGU0ZWRmdxRmRyRj5GPkY+Rj5GPkY+Rj5GPkZpdEY+RlhGPkZbd0ZbdkZncUZkckY+Rj5GPkY+Rj5GPkY+Rj5GaFtsRj5GXHVGPkZbXGxGPkZmb0Y+Rl5cbEZncUZkckY+Rj5GPkY+Rj5GPkY+Rj5GPkY+Rj5GPi1GPzYyUSNpZkYnRi9GW29GNUY4Rl1vRl9vRkRGR0ZJRktGTUZPRlFGU0ZWRj4tRiw2KFEmZXZhbGJGJ0YvRjJGNUY4RjstRmJvNiktRiM2KUZpdEY+Rmh2Rj5GW3dGX3FGQkYvRltvRjVGOEZdb0Zfb0Y+LUY/NjJRJXRoZW5GJ0YvRltvRjVGOEZdb0Zfb0ZERkdGSUZLRk1GT0ZRRlNGVkZncUZkckY+Rj5GPkY+Rj5GPkY+Rj5GPkY+Rj5GPkY+Rj5GPkY+Rl91Rj5GWEY+LUZibzYrLUYjNjhGZnRGPi1GPzYwUSsmTm90RXF1YWw7RidGL0Y1RjhGQkZERkdGSUZLRk1GT0ZRRmVuRmduRj4tRltbbDYnUSIwRidGL0Y1RjhGQkZpb0Y+Rlx1Rj5GaHZGPkZlXWxGaW9GPkZhdy1GYm82KS1GIzYlRmB0Rl9xRkJGL0Zbb0Y1RjhGXW9GX29GaW9GPkZhdy1GYm82KS1GIzYlRmVwRl9xRkJGL0Zbb0Y1RjhGXW9GX29GX3FGQkYvRltvRjVGOEZdb0Zfb0ZhcUZkcUZbdkZncUZkckY+Rj5GPkY+Rj5GPkY+Rj5GPkY+Rj5GPkY+Rj5GPkY+RmJ1Rj5GWEY+LUZibzYrLUYjNjhGZnRGPkZodkY+RmVdbEZpb0Y+Rlx1Rj5GYl1sRj5GZV1sRmlvRj5GYXdGaF1sRmlvRj5GYXdGXF5sRl9xRkJGL0Zbb0Y1RjhGXW9GX29GYXFGZHFGW3ZGZ3FGZHJGPkY+Rj5GPkY+Rj5GPkY+Rj5GPkY+Rj5GPkY+Rj5GPkZldUY+RlhGPi1GLDYoUS5SZWd1bGFyQ2hhaW5zRidGL0YyRjVGOEY7LUY/NjBRIzotRidGL0Y1RjhGQkZERkdGSUZLRk1GT0ZRRlNGVi1GLDYoUS9Qb2x5bm9taWFsUmluZ0YnRi9GMkY1RjhGOy1GYm82KS1GIzYlLUZibzYrLUYjNiZGYXctRmJvNiktRiM2JkZody1GYm82KS1GIzYlRl91Rl9xRkJGL0Zbb0Y1RjhGXW9GX29GX3FGQkYvRltvRjVGOEZdb0Zfb0ZfcUZCRi9GW29GNUY4Rl1vRl9vRmFxRmRxRl9xRkJGL0Zbb0Y1RjhGXW9GX29GW3ZGZ3FGZHJGPkY+Rj5GPkY+Rj5GPkY+Rj5GPkY+Rj5GPkY+Rj5GPkZhXGxGPkZkXGwtRmJvNiktRiM2M0ZkXmxGZ15sLUYsNihRNlNlbWlBbGdlYnJhaWNTZXRUb29sc0YnRi9GMkY1RjhGO0ZnXmwtRiw2KFEoSXNFbXB0eUYnRi9GMkY1RjhGOy1GYm82KS1GIzYoRl91RmlvRj5GZXVGX3FGQkYvRltvRjVGOEZdb0Zfb0Y+LUY/NjJRJGFuZEYnRi9GW29GNUY4Rl1vRl9vRkRGR0ZJRktGTUZPRlFGU0ZWRj5GZF5sRmdebEZhYGxGZ15sRmRgbC1GYm82KS1GIzYoRmJ1RmlvRj5GZXVGX3FGQkYvRltvRjVGOEZdb0Zfb0ZfcUZCRi9GW29GNUY4Rl1vRl9vRj5GW11sRmdxRmRyRj5GPkY+Rj5GPkY+Rj5GPkY+Rj5GPkY+Rj5GPkY+Rj5GPkY+Rj5GPkZjdEY+RlhGPi1GYm82Ky1GIzYpRmF3LUZibzYpLUYjNiVGY3RGX3FGQkYvRltvRjVGOEZdb0Zfb0Zpb0Y+LUZibzYrLUYjNihGZnRGaW9GPkZcdUZfcUZCRi9GW29GNUY4Rl1vRl9vRmFxRmRxRl9xRkJGL0Zbb0Y1RjhGXW9GX29GYXFGZHFGW3ZGPkZpdEY+RlhGPi1GLDYoRjRGL0YyRjVGOEY7RmdxRmRyRj5GPkY+Rj5GPkY+Rj5GPkY+Rj5GPkY+Rj5GPkY+Rj4tRj82MlEkZW5kRidGL0Zbb0Y1RjhGXW9GX29GREZHRklGS0ZNRk9GUUZTRlZGPkZhXGxGZ3FGZHJGPkY+Rj5GPkY+Rj5GPkY+Rj5GPkY+Rj5GYGJsRj5GYVxsRmdxRmRyRj5GPkY+Rj5GPkY+Rj5GPkZgYmxGPkZeXGxGZ3FGZHJGPkY+Rj5GPkZgYmxGPkZeXGxGW3ZGZ3FGZHJGPkY+Rj5GPkZedi1GYm82KS1GIzYpRmV2Rj5GaHZGPkZeYmxGX3FGQkYvRltvRjVGOEZdb0Zfb0ZbdkZncUZkckY+Rj5GPkY+LUY/NjJRJ3JldHVybkYnRi9GW29GNUY4Rl1vRl9vRkRGR0ZJRktGTUZPRlFGU0ZWRj5GY3RGZ3FGPkZgYmxGPkZobi1GPzYwUSI6RidGL0Y1RjhGQkZERkdGSUZLRk1GT0ZRRmVuRmduRl9xRkI=1.3 Procedure LUkjbWlHNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHRic2JlFDRXhwZWN0ZWRWYWx1ZXNPZkFsZ2VicmFpY1NpZ25hdHVyZUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSxib2xkLWl0YWxpY0YnLyUrZm9udHdlaWdodEdRJWJvbGRGJw==Calling sequence
LUkjbWlHNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHRic2JVFDRXhwZWN0ZWRWYWx1ZXNPZkFsZ2VicmFpY1NpZ25hdHVyZUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJw==LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkobWZlbmNlZEdGJDYkLUYjNiwtSSNtaUdGJDYmUShBbGdTaWduRicvJSdpdGFsaWNHUSV0cnVlRicvJStleGVjdXRhYmxlR0Y2LyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi5RIixGJ0Y3L0Y6USdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGNi8lKXN0cmV0Y2h5R0ZELyUqc3ltbWV0cmljR0ZELyUobGFyZ2VvcEdGRC8lLm1vdmFibGVsaW1pdHNHRkQvJSdhY2NlbnRHRkQvJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4zMzMzMzMzZW1GJy1GPTYuUSJ+RidGN0ZARkIvRkZGREZHRklGS0ZNRk9GUS9GVUZTLUYxNiZRKGlvY29lZmZGJ0Y0RjdGOUY8RlctRjE2JlEwbF9zaW5nbGVfZmF1bHRzRidGNEY3RjlGNy8lMGZvbnRfc3R5bGVfbmFtZUdRKTJEfklucHV0RidGQEZALUYxNiNRIUYnLUknbXNwYWNlR0YkNiYvJSdoZWlnaHRHUSYwLjBleEYnLyUmd2lkdGhHRlMvJSZkZXB0aEdGZ28vJSpsaW5lYnJlYWtHUShuZXdsaW5lRidGX29GN0Zcb0ZALUkjbWlHNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHRic2JlFDRXhwZWN0ZWRWYWx1ZXNPZkFsZ2VicmFpY1NpZ25hdHVyZUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUrZXhlY3V0YWJsZUdRJmZhbHNlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYxLUkobWZlbmNlZEdGJDYlLUYjNi8tSSNtaUdGJDYmUShBbGdTaWduRicvJSdpdGFsaWNHUSV0cnVlRicvJStleGVjdXRhYmxlR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYuUSIsRidGNy9GO1Enbm9ybWFsRicvJSZmZW5jZUdGOS8lKnNlcGFyYXRvckdGNi8lKXN0cmV0Y2h5R0Y5LyUqc3ltbWV0cmljR0Y5LyUobGFyZ2VvcEdGOS8lLm1vdmFibGVsaW1pdHNHRjkvJSdhY2NlbnRHRjkvJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR1EsMC4zMzMzMzMzZW1GJy1GPjYuUSJ+RidGN0ZBRkMvRkZGOUZHRklGS0ZNRk9GUS9GVUZTLUYxNiZRKGlvY29lZmZGJ0Y0RjdGOkY9RlctRjE2JlEwbF9zaW5nbGVfZmF1bHRzRidGNEY3RjpGPUZXLUYxNiZRJUNvbmRGJ0Y0RjdGOkY3LyUwZm9udF9zdHlsZV9uYW1lR1EpMkR+SW5wdXRGJ0ZBRjdGQS1GMTYjUSFGJy1JJ21zcGFjZUdGJDYmLyUnaGVpZ2h0R1EmMC4wZXhGJy8lJndpZHRoR0ZTLyUmZGVwdGhHRmpvLyUqbGluZWJyZWFrR1EobmV3bGluZUYnLUZmbzYmRmhvRltwRl1wL0ZgcFElYXV0b0YnLUYxNidRQ0V4cGVjdGVkVmFsdWVzT2ZBbGdlYnJhaWNTaWduYXR1cmVGJ0Y0RjdGX29GOi1GLDYmLUYjNjEtRjE2J0YzRjRGN0Zfb0Y6LUY+Ni9GQEY3Rl9vRkFGQ0ZFRkdGSUZLRk1GT0ZRRlQtRj42L0ZZRjdGX29GQUZDRlpGR0ZJRktGTUZPRlFGZW4tRjE2J0ZobkY0RjdGX29GOkZfcUZhcS1GMTYnRltvRjRGN0Zfb0Y6Rl9xRmFxLUYxNidGXm9GNEY3Rl9vRjpGX3FGYXEtRjE2J1ElTFNGQ0YnRjRGN0Zfb0Y6RjdGQUY3Rl9vRkFGYm9GZW9GYnBGYm9GZW8tRjE2KFEqQXJndW1lbnRzRicvJSVib2xkR0Y2L0Y1RjlGNy9GO1ElYm9sZEYnLyUrZm9udHdlaWdodEdGY3JGN0Zfb0ZB
* AlgSign: an algebraic signature returned by the procedure AlgebraicSignature or a sublist of it;
* LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzZDLUkjbWlHRiQ2JVEoaW9jb2VmZkYnLyUnaXRhbGljR1EmZmFsc2VGJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRictSSNtb0dGJDYtUSI6RidGMi8lJmZlbmNlR0YxLyUqc2VwYXJhdG9yR0YxLyUpc3RyZXRjaHlHRjEvJSpzeW1tZXRyaWNHRjEvJShsYXJnZW9wR0YxLyUubW92YWJsZWxpbWl0c0dGMS8lJ2FjY2VudEdGMS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkktRjY2LVEifkYnRjJGOUY7Rj1GP0ZBRkNGRS9GSFEmMC4wZW1GJy9GS0ZQLUYsNiVRJHRoZUYnRi9GMkZMLUYsNiVRJWxpc3RGJ0YvRjJGTC1GLDYlUSNvZkYnRi9GMkZMLUYsNiVRLWNvZWZmaWNpZW50c0YnRi9GMkZMRlhGTEZSRkwtRiw2JVEmSW5wdXRGJ0YvRjJGTC1GLDYlUSdPdXRwdXRGJ0YvRjJGTC1GLDYlUSxwb2x5bm9taWFsc0YnRi9GMkZMLUYsNiVRJXVzZWRGJ0YvRjJGTC1GNjYuUSN0b0YnLyUlYm9sZEdGMUYyRjlGO0Y9Rj9GQUZDRkVGT0ZRRkwtRiw2JVEoY29tcHV0ZUYnRi9GMkZMLUYsNiVRKEFsZ1NpZ25GJy9GMFEldHJ1ZUYnL0YzUSdpdGFsaWNGJy1GNjYtUSI7RidGMkY5L0Y8RmBwRj1GP0ZBRkNGRUZPRkotSSdtc3BhY2VHRiQ2Ji8lJ2hlaWdodEdRJjAuMGV4RicvJSZ3aWR0aEdGUC8lJmRlcHRoR0ZccS8lKmxpbmVicmVha0dRKG5ld2xpbmVGJy1GLDYjUSFGJy8lMGZvbnRfc3R5bGVfbmFtZUdRJVRleHRGJ0Yy* l_single_fault: a list of single faults which are supposed to be equal to 0 when no fault occurs,
* Cond: a first optional argument which is a list, possibly empty, of contrains on the parameters and faults including, possibly, the initial conditions;
* LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYkLUkjbWlHRiQ2JlEkTFNGRicvJSdpdGFsaWNHUSV0cnVlRicvJTBmb250X3N0eWxlX25hbWVHUSkyRH5JbnB1dEYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy9GNlEnbm9ybWFsRic=: a second optional argument which is a list of 2-tuple composed of single fault(s) f_i whose presence in a multiple fault can be charaterized by a non vanishing component.
Description
The output of this procedure is a list of 2-uplets. The first component is list of (multiple) faults. The second one is the corresponding vector, EV, composed of 0, 1 and -1 with the following convention:
* EV[k] is set to 0 if AlgSign[k] is guaranted to vanish;
* EV[k] is set to 1 if AlgSign[k] is guarented to never vanish;
* EV[k] is set to -1 in the other cases.JSFHLUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzZoZG4tSSNtaUdGJDYjUSFGJy1JJ21zcGFjZUdGJDYmLyUnaGVpZ2h0R1EmMC4wZXhGJy8lJndpZHRoR1EmMC4wZW1GJy8lJmRlcHRoR0Y0LyUqbGluZWJyZWFrR1ElYXV0b0YnLUYsNihRQ0V4cGVjdGVkVmFsdWVzT2ZBbGdlYnJhaWNTaWduYXR1cmVGJy8lJ2ZhbWlseUdRLENvdXJpZXJ+TmV3RicvJSdpdGFsaWNHUSV0cnVlRicvJStmb3JlZ3JvdW5kR1ErWzEyMCwwLDE0XUYnLyUwZm9udF9zdHlsZV9uYW1lR1EsTWFwbGV+SW5wdXRGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYwUSJ+RidGQEZGRkkvRk1RJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0ZXLyUpc3RyZXRjaHlHRlcvJSpzeW1tZXRyaWNHRlcvJShsYXJnZW9wR0ZXLyUubW92YWJsZWxpbWl0c0dGVy8lJ2FjY2VudEdGVy8lJ2xzcGFjZUdGNy8lJ3JzcGFjZUdGNy1GUDYwUSomY29sb25lcTtGJ0ZARkZGSUZTRlVGWEZaRmZuRmhuRmpuRlxvL0Zfb1EsMC4yNzc3Nzc4ZW1GJy9GYW9GZm9GTy1GUDYyUSVwcm9jRidGQC8lJWJvbGRHRkVGRkZJL0ZNUSVib2xkRicvJStmb250d2VpZ2h0R0ZecEZVRlhGWkZmbkZobkZqbkZcb0Zeb0Zgby1JKG1mZW5jZWRHRiQ2Jy1GIzY2LUYsNihRKEFsZ1NpZ25GJ0ZARkNGRkZJRkwtRlA2MFEiLEYnRkBGRkZJRlNGVS9GWUZFRlpGZm5GaG5Gam5GXG9GXm8vRmFvUSwwLjMzMzMzMzNlbUYnRk8tRiw2KFEqbF9pb2NvZWZmRidGQEZDRkZGSUZMRmlwRk8tRiw2KFEwbF9zaW5nbGVfZmF1bHRzRidGQEZDRkZGSUZMRmlwRk9GTy1GLDYoUSVDb25kRidGQEZDRkZGSUZMRmJvLUZicDYpLUYjNiVGKy8lK2V4ZWN1dGFibGVHRldGU0ZARkZGSUZTLyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnRmlwRk8tRiw2KFE6bF9DaGFyYXRlcml6ZWRTaW5nbGVGYXVsdEYnRkBGQ0ZGRklGTEZib0ZocUZcckZTRkBGRkZJRlNGKy1GMDYmRjJGNUY4L0Y7UShuZXdsaW5lRidGLy1GUDYyUSZsb2NhbEYnRkBGW3BGRkZJRl1wRl9wRlVGWEZaRmZuRmhuRmpuRlxvRl5vRmBvRk8tRiw2KFExTGlzdE1GX0NvckFsZ1JlbEYnRkBGQ0ZGRklGTEZpcEZPLUYsNihRM011bHRpcGxlRmF1bHRzTGlzdEYnRkBGQ0ZGRklGTEZpcEZPLUYsNihRIlNGJ0ZARkNGRkZJRkxGaXBGTy1GLDYoUSJSRidGQEZDRkZGSUZMRmlwRk8tRiw2KFEuTXVsdGlwbGVGYXVsdEYnRkBGQ0ZGRklGTEZpcEZPLUYsNihRKlN5c3RlbV9tZkYnRkBGQ0ZGRklGTEZpcEZPLUYsNihRImlGJ0ZARkNGRkZJRkxGaXBGTy1GLDYoUSRFYXNGJ0ZARkNGRkZJRkxGaXBGTy1GLDYoUSRFc2ZGJ0ZARkNGRkZJRkxGaXBGTy1GLDYoUS9sX21mX2FzX2V4cFZhbEYnRkBGQ0ZGRklGTEZpcEZPLUYsNihRJWlfbWZGJ0ZARkNGRkZJRkxGaXBGTy1GLDYoUS1sX2V4cGVjdF92YWxGJ0ZARkNGRkZJRkxGaXBGTy1GLDYoUSJrRidGQEZDRkZGSUZMRmlwRk8tRiw2KFEkQkdJRidGQEZDRkZGSUZMRmlwRk8tRiw2KFElZXFuc0YnRkBGQ0ZGRklGTC1GUDYwUSI7RidGQEZGRklGU0ZVRlxxRlpGZm5GaG5Gam5GXG9GXm9GZ29GZ3JGLy1GUDYwUSIjRidGQEZGRklGU0ZVRlhGWkZmbkZobkZqbkZcb0Zeb0Zgby1GLDYoUU1+SW5wdXRzOn5+Kn5hbn5hbGdlYnJhaWN+c2lnbmF0dXJlfkFsZ1NpZ25+O0YnRkBGQ0ZGRklGTEZnckYvRl52LUYsNihRYnB+fn5+fn5+fn5+Kn50aGV+bGlzdCx+bF9pb2NvZWZmLH5vZn5pbnB1dH5vdXRwdXR+Y29lZmZpY2llbnRzfnVzZWR+dG9+Y29tcHV0ZX5BbGdTaWdufjtGJ0ZARkNGRkZJRkxGZ3JGL0Zedi1GLDYoUVp+fn5+fn5+fn5+Kn50aGV+bGlzdCx+bF9zaW5nbGVfZmF1bHRzLH5vZn5zaW5nbGV+ZmF1bHRzfjtGJ0ZARkNGRkZJRkxGZ3JGL0Zedi1GLDYoUWVwfn5+fn5+fn5+fip+dGhlfmxpc3QsfkNvbmQsfnBhcmFtZXRlcnN+Y25zdHJhaW5zfmluY2x1ZGluZ35ldmVudHVhbGx5fmluaXRpYWx+Y29uZGl0aW9uc347RidGQEZDRkZGSUZMRmdyRi9GXnYtRiw2KFFgcn5+fn5+fn5+fn4qfnRoZX5saXN0LH5sX0NoYXJhdGVyaXplZFNpbmdsZUZhdWx0LH5ldmVudHVhbGx5fmVtcHR5LH5vZn4yLXVwbGV0fmNvbXBvc2Vkfm9mfnNpbmdsZX5mYXVsdHN+Zl9pfmFuZH5vZn5hfkYnRkBGQ0ZGRklGTEZnckYvRl52LUYsNihRXHB+fn5+fn5+fn5+fn5+fmNvbXBvbmVudCx+QWxnU2lnbl9pLH5vZn5BbGdTaWdufnN1Y2h+dGhhdH5mX2k8PjB+aWZmfkFsZ1NpZ25faTw+MC5GJ0ZARkNGRkZJRkxGZ3JGL0Zedi1GLDYoUV9wfk91dHB1dDp+fip+dGhlfmxpc3R+Z2l2aW5nLH5mb3J+ZWFjaH5zaW5nbGV+ZmF1bHQsfnRoZX5leHBlY3RlZH52YWx1ZXN+b2Z+QWxnU2lnbn47RidGQEZDRkZGSUZMRmdyRi9GXnYtRiw2KFFddH5+fn5+fn5+fn4qfih3aXRofnRoZX5mb2xsb3dpbmd+Y29udmVudGlvbjp+MH5pZn50aGV+Y29tcG9uZW50fm9mfkFsZ1NpZ25+aXN+YXNzdXJlZH50b352YW5pc2gsfjF+aWZ+aXR+Y2Fufm5vdH52YW5pc2h+YW5kfi0xfmlufnRoZX5vdGhlcn5jYXNlcykuRidGQEZDRkZGSUZMRmdyRi9GT0ZPRk9GTy1GLDYoUStrZXJuZWxvcHRzRidGQEZDRkZGSUZMLUZicDYnLUYjNiktRiw2KFErcHJpbnRieXRlc0YnRkBGQ0ZGRklGTEZPLUZQNjBRIj1GJ0ZARkZGSUZTRlVGWEZaRmZuRmhuRmpuRlxvRmVvRmdvRk8tRiw2KEZXRkBGQ0ZGRklGTEZcckZTRkBGRkZJRlNGW3ZGZ3JGL0ZPRk9GT0ZPRmFzRk9GYm9GTy1GYnA2KUZqcUZARkZGSUZTL0ZfclEifGZyRicvRmJyUSJ8aHJGJ0ZbdkZnckYvRk9GT0ZPRk9GXnYtRiw2KFFkb35HZW5lcmF0aW5nfnRoZX5saXN0LH5NdWx0aXBsZUZhdWx0c0xpc3Qsfm9mfmFsbH50aGV+cG9zc2libGV+bXVsdGlmYXVsdHNGJ0ZARkNGRkZJRkxGZ3JGL0ZPRk9GT0ZPRmRzRk9GYm9GTy1GLDYoUSljb21iaW5hdEYnRkBGQ0ZGRklGTC1GUDYwUSM6LUYnRkBGRkZJRlNGVUZYRlpGZm5GaG5Gam5GXG9GXm9GYG8tRiw2KFEoc3Vic2V0c0YnRkBGQ0ZGRklGTC1GYnA2Jy1GIzYmLUYsNihRJ2luZGV0c0YnRkBGQ0ZGRklGTC1GYnA2Jy1GIzYlRmJxRlxyRlNGQEZGRklGU0ZcckZTRkBGRkZJRlNGW3ZGZ3JGL0ZPRk9GT0ZPLUZQNjJRJndoaWxlRidGQEZbcEZGRklGXXBGX3BGVUZYRlpGZm5GaG5Gam5GXG9GXm9GYG9GTy1GUDYyUSRub3RGJ0ZARltwRkZGSUZdcEZfcEZVRlhGWkZmbkZobkZqbkZcb0Zeb0Zgb0ZPRmRzLUZicDYpLUYjNiUtRiw2KFEpZmluaXNoZWRGJ0ZARkNGRkZJRkxGXHJGU0ZARkZGSUZTRl5yRmFyRk8tRlA2MlEjZG9GJ0ZARltwRkZGSUZdcEZfcEZVRlhGWkZmbkZobkZqbkZcb0Zeb0Zgb0ZPRmFzRk9GYm9GTy1GYnA2KS1GIzYpLUYsNihRI29wRidGQEZDRkZGSUZMLUZicDYnLUYjNiVGYXNGXHJGU0ZARkZGSUZTRmlwRk8tRmJwNiktRiM2JkZpW2wtRmJwNictRiM2J0Zkcy1GYnA2KS1GIzYlLUYsNihRKm5leHR2YWx1ZUYnRkBGQ0ZGRklGTEZcckZTRkBGRkZJRlNGXnJGYXItRmJwNidGanFGQEZGRklGU0ZcckZTRkBGRkZJRlNGXHJGU0ZARkZGSUZTRl5yRmFyRlxyRlNGQEZGRklGU0ZqeEZceUZPLUZQNjJRJGVuZEYnRkBGW3BGRkZJRl1wRl9wRlVGWEZaRmZuRmhuRmpuRlxvRl5vRmBvRk9GYltsRlt2RmdyRi9GT0ZPRk9GT0Zedi1GLDYoUVxxfkRldGVybWluYXRpb24sfmZvcn5lYWNofm11bHRpcGxlZmF1bHQsfk11bHRpcGxlRmF1bHQsfm9mfnRoZX5jb3JyZXNwb25kaW5nfnNlbWl+YWxnZWJyYWljfnN5c3RlbUYnRkBGQ0ZGRklGTEZnckYvRk9GT0ZPRk9GXnNGT0Zib0ZPRmhxRlt2RmdyRi9GT0ZPRk9GTy1GUDYyUSRmb3JGJ0ZARltwRkZGSUZdcEZfcEZVRlhGWkZmbkZobkZqbkZcb0Zeb0Zgb0ZPRmpzRk8tRlA2MlEjaW5GJ0ZARltwRkZGSUZdcEZfcEZVRlhGWkZmbkZobkZqbkZcb0Zeb0Zgb0ZPRmFzRk9GYltsRmdyRi9GT0ZPRk9GT0ZPRk9GT0ZPRl10Rk9GYm9GTy1GLDYoUSdFcXVhdGVGJ0ZARkNGRkZJRkwtRmJwNictRiM2KEZfcUZpcEZPLUZicDYpLUYjNiYtRiw2KFEkc2VxRidGQEZDRkZGSUZMLUZicDYnLUYjNjItRiw2KFEkY2F0RidGQEZDRkZGSUZMLUZicDYnLUYjNigtRiw2KFElcGhpX0YnRkBGQ0ZGRklGTEZpcEZPRmB0RlxyRlNGQEZGRklGU0ZpcEZPRmB0Rk9GY3hGTy1JI21uR0YkNidRIjFGJ0ZARkZGSUZTRk8tRlA2MFEjLi5GJ0ZARkZGSUZTRlVGWEZaRmZuRmhuRmpuRlxvL0Zfb1EsMC4yMjIyMjIyZW1GJ0Zgb0ZPLUYsNihRJW5vcHNGJ0ZARkNGRkZJRkwtRmJwNictRiM2JUZfcUZcckZTRkBGRkZJRlNGXHJGU0ZARkZGSUZTRlxyRlNGQEZGRklGU0ZeckZhckZcckZTRkBGRkZJRlNGW3ZGZ3JGL0ZPRk9GT0ZPRk9GT0ZPRk9GZ11sRk9GYHRGTy1GUDYyUSN0b0YnRkBGW3BGRkZJRl1wRl9wRlVGWEZaRmZuRmhuRmpuRlxvRl5vRmBvRk9GYmBsRmF6Rk9GYltsRmdyRi9GT0ZPRk9GT0ZPRk9GT0ZPRk9GT0ZPRk8tRlA2MlEjaWZGJ0ZARltwRkZGSUZdcEZfcEZVRlhGWkZmbkZobkZqbkZcb0Zeb0Zgb0ZPLUYsNihRJmV2YWxiRidGQEZDRkZGSUZMLUZicDYnLUYjNiYtRiw2KFEnbWVtYmVyRidGQEZDRkZGSUZMLUZicDYnLUYjNilGYnEtRmJwNiktRiM2JUZgdEZcckZTRkBGRkZJRlNGXnJGYXJGaXBGT0Zqc0ZcckZTRkBGRkZJRlNGXHJGU0ZARkZGSUZTRk8tRlA2MlEldGhlbkYnRkBGW3BGRkZJRl1wRl9wRlVGWEZaRmZuRmhuRmpuRlxvRl5vRmBvRk9GXXRGT0Zib0ZPLUZicDYpLUYjNi5GaVtsLUZicDYnLUYjNiVGXXRGXHJGU0ZARkZGSUZTRmlwRk9GYnFGXWJsRk8tRlA2MFErJk5vdEVxdWFsO0YnRkBGRkZJRlNGVUZYRlpGZm5GaG5Gam5GXG9GZW9GZ29GTy1Gal9sNidRIjBGJ0ZARkZGSUZTRlxyRlNGQEZGRklGU0ZeckZhckYrRmdyRi9GT0ZPRk9GT0ZPRk9GT0ZPRk9GT0ZPRk8tRlA2MlElZWxzZUYnRkBGW3BGRkZJRl1wRl9wRlVGWEZaRmZuRmhuRmpuRlxvRl5vRmBvRk9GXXRGT0Zib0ZPLUZicDYpLUYjNi5GaVtsRmhibEZpcEZPRmJxRl1ibEZPRmN4Rk9GX2NsRlxyRlNGQEZGRklGU0ZeckZhckYrRmdyRi9GT0ZPRk9GT0ZPRk9GT0ZPRk9GT0ZPRk9GYV1sRk9GXGFsRmdyRi9GT0ZPRk9GT0ZPRk9GT0ZPRmFdbEZPRmJbbEZbdkZnckYvRk9GT0ZPRk9GT0ZPRk9GT0Zec0ZPRmJvRk8tRmJwNiktRiM2KUZpW2wtRmJwNictRiM2JUZec0ZcckZTRkBGRkZJRlNGaXBGTy1GYnA2KS1GIzYoRmpzRmlwRk9GXXRGXHJGU0ZARkZGSUZTRl5yRmFyRlxyRlNGQEZGRklGU0ZeckZhckYrRmdyRi9GT0ZPRk9GT0ZhXWxGT0ZiW2xGW3ZGZ3JGL0ZPRk9GT0ZPRmN0Rk9GYm9GTy1GYnA2KS1GIzYmRmhebC1GYnA2Jy1GIzYzRmRyRl1ibC1GYnA2KS1GIzYlLUZqX2w2J1EiMkYnRkBGRkZJRlNGXHJGU0ZARkZGSUZTRl5yRmFyRmlwRk9GYHRGT0ZjeEZPRmlfbEZPRl1gbEZPRmJgbC1GYnA2Jy1GIzYlRmRyRlxyRlNGQEZGRklGU0ZcckZTRkBGRkZJRlNGXHJGU0ZARkZGSUZTRl5yRmFyRlt2RmdyRi9GT0ZPRk9GT0ZmdEZPRmJvRk8tRmJwNiktRiM2JkZoXmwtRmJwNictRiM2M0ZkckZdYmwtRmJwNiktRiM2JUZpX2xGXHJGU0ZARkZGSUZTRl5yRmFyRmlwRk9GYHRGT0ZjeEZPRmlfbEZPRl1gbEZPRmJgbEZkZWxGXHJGU0ZARkZGSUZTRlxyRlNGQEZGRklGU0ZeckZhckZbdkZnckYvRk9GT0ZPRk9GXnYtRiw2KFFccH5EZXRlcm1pbmF0aW9ufm9mfnRoZX5leHBlY3RlZH52YWx1ZXMsfmxfbWZfYXNfZXhwVmFsLH5vZn50aGV+YWxnZWJyYWljfnNpZ25hdHVyZUYnRkBGQ0ZGRklGTEZnckYvRk9GT0ZPRk9GaXRGT0Zib0ZPRmhxRlt2RmdyRi9GT0ZPRk9GTy1GLDYoUSdwcmludGZGJ0ZARkNGRkZJRkwtRmJwNictRiM2K0YrLUkjbXNHRiQ2I1EkJS1zRidGT0ZpcEZPLUZfZ2w2I1FAUHJvY2Vzc2luZ35vZn50aGV+bXVsdGlmYXVsdH46fkYnRitGXHJGU0ZARkZGSUZTRlt2RmdyRi9GT0ZPRk9GT0ZnXWxGT0ZcdUZPRmlgbEZPRmJgbEZdZGxGT0ZiW2xGZ3JGL0ZPRk9GT0ZPRk9GT0ZPRk9GT0ZnZmwtRmJwNictRiM2LEYrLUZfZ2w2I1EkfiVhRidGT0ZpcEZPRl5zLUZicDYpLUYjNiVGXHVGXHJGU0ZARkZGSUZTRl5yRmFyRmBmbEZcckZTRkBGRkZJRlNGW3ZGZ3JGL0ZPRk9GT0ZPRk9GT0ZPRk9GX3VGT0Zib0ZPRmhxRlt2RmdyRi9GT0ZPRk9GT0ZPRk9GT0ZPRmddbEZPRmJ1Rk9GaWBsRk9GYmBsLUZicDYnLUYjNiVGZnBGXHJGU0ZARkZGSUZTRk9GYltsRk9GT0ZPRl52LUYsNihRZnR+VGVzdGluZ353aGV0aGVyfml0fmlzfnBvc3NpYmxlfnRvfmNvbXBsZXRlfnRoZX5saXN0fm9mfmV4cGVjdGVkfnZhbHVlcyx+bF9leHBlY3RfdmFsLH53aXRofmFufmV2ZW50dWFsfmNoYXJhY3Rlcml6YXRpb25+Z2l2ZW5+Ynl+bF9DaGFyYXRlcml6ZWRTaW5nbGVGYXVsdEYnRkBGQ0ZGRklGTEZnckYvRk9GT0ZPRk9GT0ZPRk9GT0ZPRk9GT0ZPRlxhbEZPRmZhbC1GYnA2Jy1GIzYpRmZwLUZicDYpLUYjNiVGYnVGXHJGU0ZARkZGSUZTRl5yRmFyRmlwRk9GY3RGXHJGU0ZARkZGSUZTRk9GYWJsRmdyRi9GT0ZPRk9GT0ZPRk9GT0ZPRk9GT0ZPRk9GT0ZPRk9GT0ZcYWxGT0ZmYWwtRmJwNictRiM2K0ZmdC1GYnA2KS1GIzYoLUYsNihRKkxpc3RUb29sc0YnRkBGQ0ZGRklGTEZkeS1GLDYoUSdTZWFyY2hGJ0ZARkNGRkZJRkxGZ2hsRlxyRlNGQEZGRklGU0ZeckZhckZpcEZPRl5zRlxobEZgZmxGXHJGU0ZARkZGSUZTRk9GYWJsRk9GX3VGT0Zib0ZPLUZicDYpLUYjNilGaVtsLUZicDYnLUYjNiVGX3VGXHJGU0ZARkZGSUZTRmlwRk9GaV9sRlxyRlNGQEZGRklGU0ZeckZhckYrRmdyRi9GT0ZPRk9GT0ZPRk9GT0ZPRk9GT0ZPRk9GT0ZPRk9GT0ZiY2xGT0ZfdUZPRmJvRk8tRmJwNiktRiM2KUZpW2xGYWpsRmlwRk9GX2NsRlxyRlNGQEZGRklGU0ZeckZhckYrRmdyRk9GT0ZPRk9GT0ZPRk9GT0ZPRk9GT0ZPRk9GT0ZPRk9GT0ZhXWxGT0ZcYWxGT0ZbdkZnckZPRk9GT0ZPRk9GT0ZPRk9GT0ZPRk9GT0ZiY2xGXnYtRiw2KFFmdH5UZXN0aW5nfndoZXRoZXJ+dGhlfmNvbXBvbmVudH5BbGdTaWduW2tdfm9mfkFsZ1NpZ25+dmFuaXNoZXN+b3J+ZG9lc35ub3R+dmFuaXNofndoZW5+dGhlfm11bHRpcGxlfmZhdWx0fm9jY3Vyc351c2luZ35lbXB0aW5lc3N+dGVzdHN+b2Z+U2VtaUFsZ2VicmFpY35zZXRzRidGQEZDRkZGSUZMRmdyRi9GT0ZPRk9GT0ZPRk9GT0ZPRk9GT0ZPRk9GT0ZPRk9GT0ZldUZPRmJvRk9GXnNGXGhsRl1lbEZbdkZnckYvRk9GT0ZPRk9GT0ZPRk9GT0ZPRk9GT0ZPRk9GT0ZPRk9GZ3NGT0Zib0ZPLUYsNihRLlJlZ3VsYXJDaGFpbnNGJ0ZARkNGRkZJRkxGZHktRiw2KFEvUG9seW5vbWlhbFJpbmdGJ0ZARkNGRkZJRkwtRmJwNictRiM2JS1GYnA2KS1GIzYmRmlbbC1GYnA2Jy1GIzYrRl56LUZicDYnLUYjNiVGZXVGXHJGU0ZARkZGSUZTRk8tRlA2MlEmdW5pb25GJ0ZARltwRkZGSUZdcEZfcEZVRlhGWkZmbkZobkZqbkZcb0Zeb0Zgb0ZPRl56LUZicDYnLUYjNiVGZXFGXHJGU0ZARkZGSUZTRlxyRlNGQEZGRklGU0ZcckZTRkBGRkZJRlNGXnJGYXJGXHJGU0ZARkZGSUZTRlt2RmdyRi9GT0ZPRk9GT0ZPRk9GT0ZPRk9GT0ZPRk9GT0ZPRk9GT0ZodUZPRmJvRk8tRmJwNiktRiM2MkZmcEZbaWxGT0ZcY2xGT0ZfY2xGaXBGT0ZpW2xGXlxtRmlwRk9GaVtsRmVcbUZcckZTRkBGRkZJRlNGXnJGYXJGW3ZGZ3JGL0ZPRk9GT0ZPRk9GT0ZPRk9GT0ZPRk9GT0ZPRk9GT0ZPRlxhbEZPRl9hbC1GYnA2Jy1GIzYqRlxbbUZkeS1GLDYoUTZTZW1pQWxnZWJyYWljU2V0VG9vbHNGJ0ZARkNGRkZJRkxGZHktRiw2KFEoSXNFbXB0eUYnRkBGQ0ZGRklGTC1GYnA2Jy1GIzYoRmh1RmlwRk9GZ3NGXHJGU0ZARkZGSUZTRlxyRlNGQEZGRklGU0ZPRmFibEZPRl91Rk9GYm9GT0ZlamxGK0ZnckYvRk9GT0ZPRk9GT0ZPRk9GT0ZPRk9GT0ZPRk9GT0ZPRk9GYmNsRk9GT0ZPRk9GaHVGT0Zib0ZPLUZicDYpLUYjNjJGZnBGW2lsRk9GY3hGT0ZfY2xGaXBGT0ZpW2xGXlxtRmlwRk9GaVtsRmVcbUZcckZTRkBGRkZJRlNGXnJGYXJGW3ZGZ3JGL0ZPRk9GT0ZPRk9GT0ZPRk9GT0ZPRk9GT0ZPRk9GT0ZPRk9GT0ZPRk9GT0ZPRk9GT0ZcYWxGT0ZfYWxGXV1tRk9GYWJsRk9GX3VGT0Zib0ZPRl1qbEZPRmdyRi9GT0ZPRk9GT0ZPRk9GT0ZPRk9GT0ZPRk9GT0ZPRk9GT0ZPRk9GT0ZPRk9GT0ZPRk9GYmNsRk9GX3VGT0Zib0ZPLUZicDYpLUYjNipGaVtsRmFqbEZpcEZPLUZQNjBRKiZ1bWludXMwO0YnRkBGRkZJRlNGVUZYRlpGZm5GaG5Gam5GXG9GYGBsL0Zhb0ZhYGxGaV9sRlxyRlNGQEZGRklGU0ZeckZhckZPRmdyRk9GT0ZPRk9GT0ZPRk9GT0ZPRk9GT0ZPRk9GT0ZPRk9GT0ZPRk9GT0ZPRk9GT0ZPRk9GYV1sRk9GXGFsRk9GW3ZGZ3JGT0ZPRk9GT0ZPRk9GT0ZPRk9GT0ZPRk9GT0ZPRk9GT0ZPRmFdbEZPRlxhbEZPRlt2RmdyRi9GT0ZPRk9GT0ZPRk9GT0ZPRk9GT0ZPRk9GYV1sRk9GXGFsRmdyRi9GT0ZPRk9GT0ZPRk9GT0ZPRmFdbEZPRmJbbEZbdkZnckYvRk9GT0ZPRk9GT0ZPRk9GT0ZpdEZPRmJvRk8tRmJwNiktRiM2KUZpW2wtRmJwNictRiM2JUZpdEZcckZTRkBGRkZJRlNGaXBGTy1GYnA2KS1GIzYqRl5zRlxobEZgZmxGaXBGT0ZfdUZcckZTRkBGRkZJRlNGXnJGYXJGXHJGU0ZARkZGSUZTRl5yRmFyRitGZ3JGL0ZPRk9GT0ZPRmFdbEZPRmJbbEZbdkZnckYvRk9GT0ZPRk9GaXctRmJwNictRiM2KUZgeEZPRmN4Rk8tRiw2KEZFRkBGQ0ZGRklGTEZcckZTRkBGRkZJRlNGW3ZGZ3JGL0ZPRk9GT0ZPLUZQNjJRJ3JldHVybkYnRkBGW3BGRkZJRl1wRl9wRlVGWEZaRmZuRmhuRmpuRlxvRl5vRmBvRk9GaXRGZ3JGT0ZhXWxGT0Zob0ZPLUZQNjBRIjpGJ0ZARkZGSUZTRlVGWEZaRmZuRmhuRmpuRlxvRmVvRmdvRlxyRlM=LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=2. Application to a mechanical system with two degrees of freedomThe mechanical system, studied in this section, is outlined in the figure hereafter. It is composed of two masses m1 and m2 with three spring stiffness k1, k2 and k3 free to move on a horizontal axis.
The frictions are ignored. The parameters k1, k2, k3, m1, m2 and d are known and the position of mass m1 and m2 are respectively denoted by x1 and x2.
TUZOV3RLVWI8b2I8Uj1NRExDZE5OWllddkBbPEo6eGxFUU9hQkJgTlxcQE5kXFxRZ3F4WFlRRk1rZFRZWXRXXj1LPEBqWkRRQj1USmRSS11SPk1qXmhOQkxLUjxTZDxuPFBuWk9wclhndD9bRFBzRFF2REBzYV9yT15iPEBqPkZjRFhqXkZzU0ZzSEZjakZSX1ZWS3I6c2lxWUlheXJzbXNYWVVPVXROdWJjSWVzc3dZU3huYVRxdVRPdWV1TXJ1bXNzd3hQbWhFdWRoY0JOS0M/T1JbP1RiS1ZAc1RjP0NOS0M/SnBNbko9T05MO2B3PkVuSj1PTlJTSWM8RWZKPUdOTnNIX1xcRGZKckhdRERjYjxFPmdlXmVCXnNGYXNldXNYSGV2Wj9jU11leXNZeGF0Y1dUZHNiRm12cF1YRmVEa0ticmNEO11TW2loUXFVVUVpbGV2bGdWRUF2dFl2XVl2WVdZaElJT0djXFxrdEppZ1V1SGJFd1BpZ1V1V3Vnd3B3RXldeUtlQkxHdGtzV1hhaUltSXNhVnNReF9ZeXF5d3lneXBZdW9dU09DaDpjZ1dfclBrdXV1d3dHQ01rTm9EcmU9cXhlTEJQTkBEeGN5bllwa1NUUGBRdj9Za0loUXBBbURVTk08bmtVdkBZVGBgU2NldGRoTFhVd1JQT05obWJcXG07YHg/cFVOaE9VbVRfSG5CaFNmPXVqSEp5VXdReW9pUG5CYVByPFhaQWpISG88RXVDUHJPXFxUUGVvVkVxbEVvTGVuTk1NW11KbGV5XmBuXlhQYW1zQllqYXlzWXh5d3l4WXlrWXRRaF1RTElOc0RRU3Rya3lUX3F2QnhzeXR5dkBYW1Fyb0xXTkFzVnlRbWF4Y1l0QnFMaFxcVXJATklsbXRkWERMa25teGZJVV1ZcnJMWGpBdjs9b1Ntcl9dbWpVUVNwWUZlTFNkSlNEV1hJU3lxeXd5SkY8TUp5b1l1UXZAc25hd15YVGFwU1NRcF9VVD9kS1E8THA8bE5sVGJAVFt1eGhpdUNES0NkVkVxbHdEWWxhdkpITj1tdkhpbVVNcW5Fd19UU1BgcGNVdGA9dWpIVnJhTkh4eGdZdXFlckRoTF9UU1BgVXJAWFtZeEl5UXk8WFpBUk88bj5JbF10UlpEcEBla1RkVW9lVGBtU2k9blV0T3lgeWxFbk5dc1JIUD10UnhFeV95bGFsbXJNTlFtb1Z1WXdpeFFRd09Zb0Fxa1dUdXBoV1VdTVlxcGdVVVFwT1c9VmpIeWxpdlVdcXJFWGlxdXdIdmNQWF5Bc0tIanhdT2ZRSnlwd1d4WFhJc05YVlRoUlxcdWpsWExhYUs9RFFiaXBRcVVldXE/YGxORGtjXFxLb3RXWGFxSHh1Pz1QQnFtd1RZWGBRc113cUBYSF1tU2xxWlF3ZXhvSFFRPU14bXlzeVR2aVVqQGRLTlVRPUFrY1V0YGhyQXlyPU1vSWhRcEF1XXRrdkxQdW14ZlF1b1hXcUF3S1lKS21MZHlKaFFYPWlLcVxcdXF1dXd1eFl5WXlcXFVSaVVxZXU/THY8dFBXQG1SQFl1aXdxeFFzYXZNeFBYQVldUHNKSHBxdXdYXXlndFRoYFVgcXlTQHZgWG1wZFc8UGlJZ21zVmhgWVpJXmFKWW9Rd29bWXJBeHVsV3NnPmlxaW9xcHU8dmg7Rm93dmhoYV1ub2ZMYW5DX3REaFp3R2lpaXFxUWdPUW9PUXBfV3NGaHhdV3BCWHVzQGlrUXZDWFxcYT5cXElgXWNZXnJ3XkBeYHFPX1ZRXldveXZJeVdGYVZJcF13cmp5dGdhc0RYXz8/aWJPYEBWaUZBbWt2ZXZHeD9mW0lgWmxJW1ZeeXZZeEl5aXJJdkFObWZJZ1pBdFtYYj13akhmeWRZb2lgd2lxcj9pcjt5W3h5eHl4eXdJeEF5XW1wc21gbGtZZmVmZGRgZG1wZkdHZ0hXeXF5d0FIZmJwcXRxYkxPZExGaVg/YFdpaGVxdFtebWZWZXBgb0l3bXg+a3c+YVJfcGJHdFV4Z3hIXWN2d2V2b3ZQdHJIaF15cll2aVZgcUlpY3FmdU5PcW5Hd3l4eXd5d1h2ZnBfdGRhc0dObW5jcUdzPXdEaFtVOj9kbWNjV295eFl5aUF0REtUSTt3RllnaW9pVElnTXVGSnFDXFxvTkpVVXZtSnRIdF9YU1FIUj1wSmthT2twd1dZcV15T2J5b11JV01NVExdd1BAVGZeZW5paFFpZWFmdUhGYXBZckF4W2FPYFlZW01xakloeXF5cXlpa0pgZm5hdzo+XFxFaGtVdmB4b3hTeWY+R1JBU3FJeEF5RW1hdzpVRlJpR1hdaXJddGJHVEI9c09pdkBRU2dhZj5FY0xzR3Y/eDxBeWtZdmFdc1JHYk5JcnJ1RHNrRExxQ2p1ZG9XV1FxaW5RdEVtQmlfZ0pFZjx1c1hnSUt3dFR5dT9BVllJWEE8eDx0V0tha2dgU0loTXVsWHZReWV5b0JVc0JpTzw8TmxpTXRcXFg6PUs+RG9ZUFBfTVM7UWo/ZFRldW9OdFl4SXlhdHZ0XFxUVFBSXkhqTFFzSWFOYXROPT15cVxcdWpVUkVwTGdcXHZrWVRhcFNXXFxRcj10a2FwUkRscXh1eFV5XklzTUB4UEVVRG1tTmFZXm1YPHRMSWRrV0BQW01KQmFNPEh1cWZ5cFZcXGJHd1pJcj14XXg/eVtPYDp5ZXhHeT9GbFVuYURGY212aVpBc0tYXl5RbXBmZ1RhXkVWcl5Jb1pYXXBmdXNXdkd4YFBgX1NPamp4ZF5AY0s+ZFt5aXZZdllGcF0/XkV5bGl2Z1JBcFtgaHV2d3ZYeEhhdXNYaEV2XFxoXmtrZmVqQGY7b2ZkPmZdRmQ7P2hTX3BiR2Q6UW0/XmtqYWJBP1xcakB4a1Z2V29rbldsYXZjQFlbXVBqTD9uOkdqUGdvVGdzVkhhbVlySXZhZml0ZXhcXHhpZFlZXWdRdUNJcF13cmZvZ0JIaDxvckNYdlpebnB5ZDo/ZGpOdGpfeGpIWnVpdXZGaWxBXltBeV15a3leXXlYW2E+W0BWbD9PX0FeZFlnZk10Tk1XT1FnP1NwcnlYYkF0W3hLeDx5OmVUUHlKUG1vVkVLVElSaUhMVUxLT0xPPkRvVHRtO01QPmB4cUltYW1ta0x3XFw8SzxdeVdNSkxFc1tZckFYTm9tb1JFcFxcTGxgYU9SVVFrTFF1PFRFYW1zVFhcXDxTcWBXU1FMPmlObT1XY1FwX1VzYmhtcVBXT1FvTmBsTnBRd015Qk1XPFxcb1l1cVh0WTs9UUZwbW9xcGdVdWp5dFp5VnVwWGdRb1V1cGhVbGBkU0xUTE1Ednl0dXl1eXdxcXdVeXhkeW5ZdGtMeF1Fa2xYWHN5SmhdTUBMamtkbW9UV1Btb1ZFcWpsbmVsVGZGc24/XXhuXFxbRltrQXNgSWw6Z3dUaXBpSHFgUV1KeVxcdVBqPEdsSHZfOklkVnZmOldscXFoRmhmREBrbVhcXGpZd0NYXFxhTmFMXmxwaGdVcWdWQXFLXm9NcWNxRmBgd2N2Rng+cXZHWW1XVmV2Pl5iZndVeXBBcG9Kdm1vTl9iZl11bmh2eHZYWGlsUHJyX2l4SXlhQXhlP3BHXnFIP2NCP11zTmheYXBjV3RUZmBkX3haWWpJTmJuP1tlUG9scGFqd3V3d3g7V3FqUWZJcW13VnlwaXd1T3djeG5ydmJeXm9YZ3FURnddWWhJaWFhX11BWFo8cG9MWGBMVFF3ZXdtcHV0WGhhc1RQeFZBcFtVSlJUVVNQUF89UldxSkhcXE1CbGxAQE5XWFFxbXd4ZXl0aW1zVFhgVFhiRXdcXGlyRVhTUGBPQ3hMXXhSSXBSeGR1Y1hUYVR2PVRWQGFrc1B5ZFlvVWlwZXVOSWxVckBYO2xOVjxwcFRPdHlzeW15bWxYZkFVYkxUVl1VVm1xdkV5dHRYaGF5UFlVaWVrRmVSZmhMPUFQYFhSQXBLP1h1O0FtSEVtbGRWZGF0Y0BNTWFTc1R4SUROQ1xcTkZ0UVBxV2tBVj55VXRFd188dFFIdW14VnVMTE5cXFJ0WG5BdWt0bHByTUtOPE9KWW9RdU9WdG1zVFhgcHByTW5HcVNaZVVfTFNOQHlqWXJJRGxTWU1pRVRbWUs9eEp0UVZtUVNkRXg6eFl2XXhLeVJwRFJbcExJPFN0aHN0RFJKTXA8UXhUaXdVeXBdRFRlUFVvUE9WPU1cXEFPdllWeXF5d0lPW0h5bFlzaUR2QnFVeEV5X1V5VXVOSF1talhxYVBLPXhTTWR3WmBYQXFzU3VyR1hNQXhxSW1Rc2Fua11ZQkFsWzxORWhzVXhQcVxccEt0UlpRc0dMT01oUjpkT3dpeXFXZFtgXFx4aXFjV3RgQG5IYXhQXnd0b3V2ZFtnZm5DQ2tTcndhU0R3cmFxc1dXZWpDVjxlZkRlZERnRGVrRllpSXY9eWp5WFlpWVFlZkRlRF49dWxBWVxcTVZcXHFnV1VpalFyUj9yO0NoWnNySldlPnlIZj11SnNZUVtHUj1ETV13PmtXQVNWVGloZXVUbFVJSV9JbEFDUnNGaG11YmdIXFw9UldTU0hDRUg7dlk7Uz9DRExvZGhjVWRdaT9lR1g7aEZdRlVxWEJNZkJ1QmFBSHNNeF5VSUxJYlpfWGJBdDtbRlhDVExFQ0R3V3JhZXFNQlFfYnlXZkBlYzxXVmxrRkFJYlRfWGZBdUtbaEtbaWxvVXdPWXJ1VGhfYz9DUnNNdkN3Rmo7dU1vRkdNUnRTV0ZJUltPQ0RrdTxjVWdldXRnaF1RRlpfc1c9STt5dXZJeW15Q1RbSEJzR1hlWW9pVHhVd2BhVEJBQztfVVlrWWpZdWl1aVdnSGVtdDxpYkVTaEJlV2NbRF5fZl4/RnllR1dNaW5ldkRpZF9JWF5vYmpFSHFrdXJVVmtRdj9YdnI8cV9Vc1BMbXY9bmpcXHBOTFZWRFBcXF1SPE1SPGRMUjxLbmBxUEhTQ0FwW1VyTFhsTUhMYHlLV0xRPmRMP1lrWGlxdVVNTVFZXFxdTUJRcGpZTGRoVGVwVlZ0SkdpcW5Fd0xIdnRBSmRkeTxocGphdlNNUklwTXdMSmNYb3NcXFZPaGpzPFRmXFxMPUF4cVV0YGhTQnFrXkFtUERPTF1SaERyP2hKP3lyQVl2QVhOO2VSdEVxeGV5dFlWQXFrd1l3WXV5REFPdXFSWDxRaj1KcXRXZmF0OkxLPFh5YUhVRmlYZXF0b0xUSFxcTTt5dV9Zc1FYdkVwcjxwTmlBU0FlTE5cXFJ0PHNQdUxabVJpcFg8XFx2SGltdWhUZXBUV01xbkVteGRZdGhVO0VyWkR2Vz14RElNbWxWZl11ckh0aEBuOkBuOkFRS0hXU2FKVlBPYjxTRz1XPUhqZlhKYnV5Ykl0XUh4PFxcV11leGRpdFppV1hUVGc9djs9bHRodXN1dldATHhMamVtcldBSmRMbTpYa1NJcW1PbWFnX2t2aGhhZXJoX11BYUBYdll4eXZ5Xlg/Xl9pbl1WckF4W1FHXWxwbHBXd1BpZ3lxeXdxZ21paj1Gb0lfa2R2ZXhgYVJuYEZJaVpBcjtAc0d3b3NwdlR4YllmaW5WZkd3Z2F4XWVXcEpedk1BeWVXcFA+d0w/Xm93aEdAcXJAYWNYYHdWZFtWblFRc09YX2t5eFhZaWlpaz9IYF9QdUN5XllgaTx2cF1JYGBAbEBObnJZY2lmcW5hdE13YztHWmpJeWdXdXBodGJIZF1WbnJ5bT5hcj5JaF1xcnNfXFxvaXdETltCUVtiWWtBR2RZWV5MSXReRmVVR2NORmxfd14+UGBfT3M6X3hIWFtiQGBmd2t5bnlyPm9AUXY/WWtXcW5IZm10ZmhEXmNWSWhITmtBYV5TYXNEWGJjQHJFSFtNbl5aTmQ8UHFPYW9TV1xcU2FrXXlqO1FzW0l4ZXBkZ1BvVF5ddj5faWhwcUd3UnhgaW9td19dbnhrYFBbbF9mRFFeZXBydkhwb1d3UD9nY1dyQGhbUWFvU1dwaXd1eD5teU52ZU9kTE9sa0lgXnFdPXFqR1ZsYGhbQUBgcj94WllcXGFuY3Z4eXhZeVNmdkFxbl5gbkphZ0pXYnE+bE1HZHJ2cG9HZ21xdkdBa0M/W29Hak5xd0lJc014XldxY3hAZjtRanZIaW1RXUdXcm5RXU1PZXdvdHF4Z1k/cVdea2NZaWlpcWFBeUNpaGVxdDtwaUNpb1lOa1F2X0hmaWpYWm1fZzxeYFxcd3NYRE9paWZNYlxcSUhDbURbQ2NUO1JwYUVOX0hdY2VoX3VDdUVwTURCZVdrQVJVZ3VgQ3NwXXdSSWhmRXVsb2NNdWJiT2JMPWlqRXZDVWRgQ1lGTWRvXXU9ZUZNTWJEV2dzU1hgYVdLUWY/W3U+Y3c9a1hJaUlxYVlvaXRRTWdgR2Y9a2NdXXdSSWhwbUV2bXdWSUlidUdYPUVvV0RUR3hEc3NsdXRXdVhLXUdra1RoYVZHPVRVdWZ0ZXhkQURFYWRjU1RAXWNSQ2hmRXVsU1l0W0R2R0JCS3NhdWV3bUZJa1RmP1Vrc1l4YXlTO0dfQVJScWZhcUVSS2k7U1RfP3hgXUV5U1lwYUdSY0deR2R1c1hoPUhVd0RYPVlbZ1hlcXRwSVdjVUhcXHlJeWF5TUNpQUV0XFxnUl1FVkZVaGF1c3hhdk13U3hLeWJZZmpVSVJTdHhleXRJSXRnZVFxVXVlQ0hDVXBbdXl1eXd5eGV5Z3lvaXZFeWxJRVxcPVJLb3NbXVJIb0V3S0ltbXZGVWVaP1lGTWRHW2ZwP1l2a0ZDUVheV3NMVVVtZXJ0U0lbb0RJV3VeQ1VoW1lza1NXS3RQc2M+Y1ZdZWNUY0hcXGdiRT9EZktoTGF2XmFWWGd0SXNnW095ZFlFalVmbmNVS0FjYjtzXz9nXmVWdmtVXl9TU09IbnlEPUNkSj9kajtWOkFCdWV0QG1UPVt1aGNYbjtjW2lyP2lyb1V3UGlDQ2tyZGl0ZUdpXk1SbXllRGNEZFtCaT1Sbj1kOz9TST9ydlV3Z3doYF1kWVlTT1dzXFxpckVXRXVjQmltdXZHZWJLZWtjVHlzVGhfVWphYm5ZQkFpY1VzdFtXUkFDSVFdY2pNdj50WFhJWWFhb1NVcEp0dlpRdlxcXVZGRVJpTFNRcE9HbVdBVFZUWE5BbUtwVVFaeHd2dG5HXFxSXlhYYXFzdmlVdlFLakhQdkFsRlxcUDs9TGB5S1BBcWl1dXh0clB0a0FhTlNNV2tBcUdNbG9xV2tBT0x5aldAUGVhS15wU0xoWGVFeD5cXFFRdWplVWthPFhzdUtDRHFzeUtDVExYRGp4aXRIUVJiPE50WUtxSVhNaVNxRHNdYVBzeEpbbHRiZGtOTW9ORUt0eHB3Z3dJYWFtYWN5cXl3eV5GP21KaGBRP3dCX15fZl5bVnZJPmtIcFpSWWByaF1RcW9xd3dYaWVeQGNLTmlXX3BiR2RCZ2R4Z2lMYW5DP2s/aGV1cGhHQWV0VmZpd19DT2Fdd29tdlpYVmlmSXA7V2pAZnF0UXdlWFtRbl9eaW5GT1xcQlF2ZG90Zkhxdkd5bEFdU0FwSF5bRlZmZHZub1BmRkd4PUl1Z2FpeWl5cWFhYGBbcl9nPndIZXlHd0hYQUhQcVNhPWJSd1hPaVRvUXdPWVhlRXhycXVBY0ZHcURJT3ZERXZhZXNIO1c+a0JSTUllbWVZX0lrTXY+XVZGa1JhZ2NQdWJJbWV2Q3ldeWN5a3JFU1ZJb3Nac1RrQWI8eVZoSWRSQWhbVVJIYU08WXFrSUxkcE9MTXY8dFhaQXliTE4/PWw6VHVScXBnVU08bVZ4YFlzYXZrUVdPUW9bZExAcFNUYXZdeXl4eXd5UXlwaXd1XXdSSVB2dVBtdVFocU9CPVRzdUtUTXM7REtLYEtsVW5uWFFKUHE9ZGxVYWw/SFdNcW5vcXdXWXlzeHZYWFJaPXNidHFRRHRRdFhlPXRTPXZTeVZZaFdYYXFzaFVRREpqWXg7RXRaYW9kbFRmQFd2aFheQXNLSHY9eWo9SHA7RW9yQXZ1eHd4WHl0WXdpeG5deVdecFRXYE9iTFZGRUxiRXNnQXZBYFlqSXJBVFJBcEtPeFU7XXZYVXBgZXN4aXl1WW1uRFc8QHd4TXheSVM9cW5cXHVNTl15PWRrUkhRbW1WZXBUZ2B3T11RcmlVcml0WlFOQFFPWEx1QWRKTDxtd1RZcFlKSVxcUVpdU3ZMbGVAWWZBU2FAa0Bldz5Ebz1oVXJRbnNJc1hHYkNubj9ZdnB4W0RvdlhRdD1OYFNBcWtXZl1xckdIYV9HWmJvcj1eX0FQYEhXZklnZj9pXFw7TmY+P2FzcHd0WHdmYWJkcXRVd2dveGtNTmtRdl9YR3FsZ2ZxTmc8R2tRb2x0T1pObnk8V2NzZnliXmRiQFxcaXdiQEZhZkF1a1hya0hoPXZoa0FzXXZrbmBnU1FgXWdnc3lrdmNIQXVdd2NmSXlQV1VoRVh2XWJyXVVWXUVSYUNSWWVrYUNzd0l5YVFcXEx2S1luQVVrT1RPcGRQTzxzclB5b1l3UXBxRFlqZXhrU1RQYDx4eVhrSUBQYGhUZGBUW3hVcVRWQGFrQXBNdD1zUlRUPmFXclxcdjtVakBEclN4c1RoUEV0cVFQWV1ITUVZTXJxV2tBWWlZajxlT1hQVF9QU3NsUnRkUj5JdUNEdGF1cjx5bEFVa2E8bUc8andscHR4bldsVGxUT0hxbXdUS1NATXVxU1h5WFlpWW9Nd05JUmBoSmRxanI9VkZda0pdbmk8bFBNcm90SkxVdVM8dHBhbzpJVGJwWWM9V2NMVEY9U1ppc3F0dWY9dWpIblVReVJ5cFhRWWU9eFpJcl14Uklwc2xodWtITj1tanZxeFV5V3lJeUl5WVRhVUB1akhkTVpsTHVIV0xkU15gblxcPGx0SFJFYFFYaW9VdVByaE1GSHc+SWtNdG15bXlzdWttXFx0Z1hVcXV5eGl5d1hZcXFzSkhyaUxWZ2xNakVYcl1XcUBTYUBLTER1X3FWdURSPERXO2lqRXRMYGBTU1BKS3lsY1RUQG12UDxZRVxcUFZEcHBldkRpbE9UT1BdUEw8S0ZUdW95dFlndXRoaGV4ZGlwckVWblg+aWdpcFFxbGV2ZEheZW9GYXNGXVZZdGpfZm5BdGA+aE9xWmNAc15XcjpXZV9XXXlYX2Fvc1Z4Y3dmeE5XdXBoZ1tHW0lvYXNhbl1vb3BOaF5BY3JncWhoZXVQdGZuYz9faGpOZj5Baz9WW1BebXJGaFxcSGVtcGZxbnVyV3ZUaGBlb1xcaW5lVj5cXElPX0NhbDpIZ3lmeW5ZVE1YREFzVXdIaVlWSWdJUE1mPkVDaj1XZG94Qz1yYEV3Y3FpbndJaVtFd0F1a1dWbT92SDtEVXVoaGVnU1VoYFVCRXN4WXlZeUdIdXNGZG91eVNZcExNanlLXXV3clhxaXFxVWxXQWx1clhTUXBPc1BYX1FuPUBWW1RKQFxcSzpwc0V5S2ltdXZIeXV5d3l4dWtYVkFZV2locVBUc1d5U3FAdUtdb1JFUD5pbT5hcj5hbl5gblVwV3RIc2pJcEpAalVdbj1Ad0pwT1xceU88bFRLUW4/ZXdzRXJycXdJdVF3YXBeRXNMPHk+VFY9RVY/PWxqSXFRXW9BWVBYZHZtTU1bYHVAXXRucVlAWW5xWXRGWFBxXFx3d1hMUnhzY1BtQFFNWGhZcEl1Zjx5ZVh4YVByeGxLUWF3Qj1RYHlzWXhRYj10WkhvTWd2aWd3VklxTV5gSG5nW1ZvQ3BbWGFfcHZnRnh2RkZ1aHdyamFhQk50PW9qRkZnWGFxc1dtcGZnckFeT0FzS3Z0bV5iT19zeE9uPGZwck9vUGdvdEl4QXldSVhdcW5vXXdySHBaO0d4d2FgXT9dP2ZzYWBaQUdgcEZuUF9aVV91bGl5R3dXaXZ1Z3JdaXluU1Y/R0JXVVVpP2NTXXlheUl5SUJLQ1JoZVNtY0d4T3lkWWdyQXlyVWZDP2ZCQUdaT2c9X1VLXUNmWXVxd0N5ZWNhU1lBYUdwW1dSQVZJSWNGO2NQc2NdUVZaXXJsO1hsc0Vna0V0cWddTXVjP0NAa1l0U0lMR1NKRXZlX1RjT1RAUUJzP1RUXUlyY0d4T2hkZXRkV2Rhc1NEcURJbUZoYXdWRUd4V3loWUlyUXk+X2I+W2ZhP0hnV0ZBbWNea0Zga0dTTWhecXhVeVdxW1JnP1ReV1NMT3VqR1Y9aUJFa0RKQ0dbO3JLPXJeeUJIW0VSZ0RYP3dTR3lKXWdSRWhUZ0hlTXRtZ1hMV2RNd1hoYXVDX3hsRXdMaWY9dUpkdVF4VFBQQVJrWHZYWFloSUp1RGpsbWxnVFVQcE1vPE55ZXVveHRYVXFyRXhcXGFVc1BYW2lwS0VSO3ByYHlzWXhZVkFxa21YXlhTbWhyTWh0WHBMUWxSXlVLd0R5QEFvPXhUcGF3U1l0a0VzZWFzU1hQO0FVdWV4ZGlWaT13dUV4XFxpUmJ5eEtZXlRpX1hAYmRnc2pZckl2YT5mX19xXFxJPmtOQWo7Vlp0aXhleVxcRFZuTD9fTk5bP3hhOklnXU50PVhuOllgUUdvTGdadmdeYW9zVkhweVd1VlZhdHBoZ1FhZF90Yl5mSGlvVGdwbHhhcFl2SXhhSEFta1ZuPGdqRG5oRXheSlB5bldbSl5cXHFAY0FAYUJGc1JpX1hmamlfcj9waUR2a09JdjtYc0lXYHBXdUFmXlJ4ZnZOYWhZakxuXFx2UXhFeV9wYW9IPmRaT2loZm4+eWd5aHlgQXVaaGh2bndyb1pBWWdzaGlSRl9gZ3hkaXRHWGp1cXhnWWhWYGhzUGhfUWN1SVo/QWE9Xl9KcXZ2d2pIYmZpVjw7eU9jYkVzRHBLY2hzQklrRT5NWUs9Z0pFRl1ZckF3Q1lraGFJeFtjZTxpaFZzRl87eV5lc0hVVDpXSHdLUmFtdUFtY1ZDUmx5RllnYnVlZj1dY24/eV5Jc01veEhTd0hXUnZNeW5Jdz1zQkg7dXVdeWFjRl9DRjtjQ0xxVVBfR1NNVmlreGtVaHJzSHVLc2pNV1BLeVJ1ZXVzWEhDeExxRHhrUj5xZWJBQlBFYl1ReDtPdFhrdT1pU3JhdmZPRV9PcllXaW1daVZXZjw7WVZxUmI7R01tZkZLckRhdGNXVEtzWEpDaUY/ZF5paUlLQ3hXdVxcZ1JFc2hCdXZrYUhddFlCdHNmVFdJaHRbYXBPaVFSQW9xcVRxcU1JQVk+WFJuXXVkcVFuXW9TVXBAcVFCTGtndU1eeFJrYEpzXXVrYUtIeHREXFxuaEV5X3VTeEhNbFxcVkJoeTpQdmdVdXBIUWhZT1pdUVFYa2pQVj9RS3I8S3VZcnlkeW5ZbHc9TFBBV0l1S1R4UGltdXBpd1Vpd0lUaEVpXnBwZ1dRY1c+Zz9PeVxceXhZeWlxX2RMXltraHlmSWVGRmB3Rl9RQXZpYHhSX2J1RmhueGpSdl1YZ3BkZ2x3SWZBcXl3cXV3WGlxd3dYaWdWXmpYeGNTUGA/cXlqTl5QaGlqZl5fZnJHcWtsQF5IcF13TndiXml0X2JOaGNRPlxcZmlnQElhW09yPkB2P3hbYWd2YklyZllqbmZrTnFqXWFobHlcXFg/aTtJeD1hcFxcd2FmQWJSR3dOSW9NXm4+QGxeP3l3YGBxSWI7Zmk7b2JnWXZjb3JEQF9PcWNqbmZwT2RIZ3ZmPmBBUV1vTmdSaWppPnRRaGNVcGBHUF1vTnNoR3hKcVo6WXZBeWtBWFpnUGVvUG9dSW1xXmdSQWBhb3NWQHh4UWhybnRHWW1xdmFsQXNdbmJ0TnZiUW1nSXNYcV1BSWhAPnlWV155Z3JvUHdPWW9hd3RnblxcaF5lQlhsUmZxQ09pTF5va29aVkZyY2d3bT5qal9td1ZpUEFhQkhKQUNnSUNTVXhheXNxV3ROO3lyV3VoVWlHQVNwRWQ/V3ZpZWV0Y1hGd0NVeUNuXWZ0b1Nea0ZNW1ZXb0dYPWlMP1k+PUY+Y0d1XXVxZXdUaVZpQUlIVVJmPUJ4UXVrQUlOO3VYS1ZiR0VOd1JoPVhGPVV5b1l3Z2k7RURSV3RbWXJBZ2M9d2ZIZWVsXWZNbWNtXUNrWXdiSXJLSUVUZXM8aUhQQWZVb2M8eVVwX1dTZ1ddQUR4SWI9c0JocWl1cVdzPUR4VXJLPXlId0JbW1lyaUZBbVltaXZRd1VUc3JxX1dTUVZZR0JoWXN4PXd0S2ZDV3VNP3VnTUlPa0deWE5BdWh1eHJBeXI9cGJSaV9YTm1eVms+SF1LR3NoR3hOSF9Nb25Fd2xoPnZoPmhqcHh4blt2YWBdUXBfV3NkYWlSYWhiaG1aTm10TmRdd2thX2FMcVo6QXZiVmxhdmN4UHRhSF1NV2tBQWlKdmRiQWJ0d2ZReV5iUXdqYGZVYWVNVlxcTWZrPUBhXFxXbWtGeE8+aWFXdWxmdz5QXFxwaFtRSGZeZnBaP2NqdmR1YVtaVnlteGZJcXBnV11YSWpYeGdhRnBaR3I8dnJcXHZydGhoZWF3PUB5amh3Qj5mU1hsYGZjbHhhZkFtZkd2Rm5rU1ZtXFxOc1JJcF13aldvWzs+Ymhpd3JwYXdPeW5XaUJIXFxRP2BucWs9X2dBdl5iYHBnWGw7YHRkd3F3P1xcS1d0aGZ1O3h0PFduZmltWnh0aGhlZVdtYW5nOnF2cUZlUD5wU19bRGhpVkZbSWhpall5aXlxcWhhUkZbWXFvSj5eQUhwWWBdPHZrPnZxPndbZ29gQm5vR3dma15jcGdvaFd1cGhnTk94a0htSmhjSj9uaEhcXFdRalBeYDxGXkNud3RvdkZJbXA/Y3RoeXBZdXdubWBfY2duXV5WdXJ3dEo+YzpZeGNvUkt2ZkxYdHVwXFxpVFRYTTp0VGZAVUt5ck1hazs9VEZ4Sll5akhcXG53dVl2SXhBSFhqRE9jRE9KUFF5SHNIVVRmQXFIWE5waEpMZXhVcU5cXDxxUGhxQE1tVmlxS213YFR3b1hzV3lOSW1tbnhzOmV3VVR2O0RqWmRRcklOQmxKcHRybEhXX01TRE1LPExsV01OQD1sPWh3U1FYPXh2bHhLSGBNc0x0a0hsXkBrbDxuSkBwWlRZQkhQVHBQWWlySk11PV1rUmx2QnlXalxccnBZWGJ0ckZITW14VklxTXVMbDtYVVJJbl95cll0WW54S0xYTzpwV1VhUEVxeWo8V01YVU9UUEVMSlhZSlBYV209UXJ0TVVdWGpxSnBYcFxcRHZVcWxFSFBvaFldRFleVE5KWExdSXBVPXJacUxKSUp1dHFsWE9cXFxcWFFtWGdoSltsalhEUVNEUVpcXE5veFdZcXVxVWthWFNRcE9VbFBmPW11dFhoSHhQeHhNYWtPRGxfdU5SXFx0YGRTVEB0VGRPQVFLRE1tVTxKdVlZVEhYckVqbmxzYGhxXm1vcE1POnRVY3VyaV1NO0lYXUFWbE1YbERUWVR2cmxvX0FtcmxKZlBRZERtZWhtYVB2XW1YUF1SX21NdF1udVRqVGRRcFVrRGxrZmF0Y1hUcG1KQGVQUlRqWUFYW3RySF1YRlhNYHR5YkhWXWxMOlV0TmVNQUB1ck1qT3RLa0hMWEF3XW1SVHlSdWltVVlSRnV0bGhPV1xcdlJxcUdcXG5jcVBFRG5EcGtXZFNrXXJwTE5WXFxudklSO1lyW1VrSExObEhPRVxccTtoU1xcRHNpPVRDVVI8VG5pQU92bXhIXUtUTFl1TVJMSXY9eWo7RVhGWFpGcWZyd2RMb2NVWXFoUXVvWHNwcW9LQF5iZnV1eGhBP2NsX2tfb3VVZ3VNV2tBaWdJZlxcaWlpSl9cXEtQZmE+Ym9Rd09ZZXFwZ0dObFhOY0V4cmg/bkpZdEZ4a1hmYWRBdVxcSVtdPm5kV3BgZ3M8UGZzTnlEV3FsaGtVZ3BFQG9yTmZ5YVpkRmRUeV1AaXBqZ2I9YFpKeXJGcG1CRm1lbnNdP2lNPnE6Pml2V2Y8XndxeXV5d2dBPl1wb1xcQD9hW1BwQUhkWmluTlB1akloZkliRkhkWk5qX19kQEBzdWhmcnheO2hmRD9sXWBgZGF2PmFoV3FqUkF3T0B0Qlhdd1BibGBcXF1hW0ZfXFxGQGE+b2JbP3F1T2tkb2hUcGNhYWB2PmFuSV1hdmBEP2Fudl5mTlxcbXFjbD5fQl9oQEdrTmB2XV9wVUFzeT51d3hkRGduRnBcXGpeYUZOaFJWckBJaTxvbUtHeVp4Wj1PdXdJYkpWa2NZdGFYdUhWdHhoW1xcQF5wWHI+P2pCVnlSV3JrTnVJR21fcVxcSXlcXFlfaVt3X2k+Y21ocm1Bdj14W3RucHI/YUxJYWx3XFw/X1pTSVtRbnFaeVp3d3Byb2F1YXdtVnl1cHVJV2BIdlxcSHhdeW5bRV5wb3htZndzaldralFaSnFzZ1ZlcEBkQEZjOmlxW0FbSFhdaFZtSEFaWVFnYk5BRXZEb2JxbUVzS1hePXJkU1dtZXQ+QVdKUVQ6QUhkTUdeWWVGT0hmU3U9R2RNQUR1Q0hUXVROPWhvS1RcXGtWamtSZE9TP1lFXXNnXFxfaUFxVUhHZkJvSUJ5dFVjWGxNVlVxUldfZU9fclJLVmRHWVJTc187R1xcP0Ved2JvbXJqV0ZsS1c9RVNib3NpdXZNYXJHX0NsW1JZU0hUXVReX3ZwbVJLZ1Y7TXh5cXZVd1deSXJPU0dQPXU8eUZzTXVPYUdMa2k7eVdCRUhiSXU/cVJHX3JoS1hKd3dsS3k9P3ZUP1Zta1JFO2VSc2ZHQVRzV2hdU2RrS1dxU3ZlQ3ZHSVlqVVZIV3N5Q2c/WUJjXXNSR0g9aUdMSVRFd3JgO0dYY0dYS2NubXhES1c/XVZTSWNmW1lzXVdcXFl3aUlFSUdXeGNzcltYakVUO0F0eG1oSkNzZztpbENGbXFCeFNiS3VoWnlHRGlYbltZT0NVZUV2ZUVFcUFyYW1IUlNCU3FoOz1JYkNmaztXdXNIdD1HcUtIcmdiW3lVYlF3QEVET3diRkFGeGFUdUNIVF1UXlFDb29YTFNJc2FYalNSRmlGTVNWQkd3WVVWbkNHUXNIRkNlR0lySl1UXFxPRUBhd2NNaEVTZVc/dGtVYltDZDxTRUthZF1rZ1dxaEJRZVpzVlxcXWZlW0Z2VWY/W1N4PXJYV3U7TXJxS1U6cWM8eVZfQ0hWS0hlSWNecURmaXZed1dhcWVsR1RKaXZLYWRUaXJkZ0RYSWhoc1RoX0VoVUZ4a0lYcWdaP1RFd0JGO3V1Z3JdQWlObXV1Z0pFZVFnbE9AQHVDdEx4UExMTExWQUtEZHByXVdpYHI/eE9BSXFHSWxoRXhqaXlSRGpQeHc+TVFWbVM8XFx2dlBSeFhPXWRSWlVYT2BQPHhvPGVrUnRrSU1zXVFsRkRYdE1PRT1uZk1xQE1SQ2FuPm1OdWBweDxzclRKUVxcV0dwTE9kTGZld25AbUxNV11tbXlkbUpJWHBdblxcTG1aYXhObUtraWpFPnRKVl09R3N0SGZuT3lCYHJaP2tfT21CX2hBVmJmVm4/dm1KQWRab2V2eV9DSXhiSGRdYF1jYFtXb3NiXmBsR3hMT19qdlpAVmlYYGJQb29NSF1nPmZkPmFTZl9ab3h5bmpqSW1TQWNAQXJEWV5PVmpDUWs7V2VTeWdCd19HaXJSRmVMVmZfRmBIQXJLZmVQYWRycXJWdmQ+SHlAR3VsaGZZQGlcXElrPGlqRXZjVGBgQ0lwP1l0eGhpdT9sWndrUHZzXFxpUj15QFlHZEV4Ykt0R2dlSkV2ZW9WR1FlUkN0a1dWQVF1PXFSZ2tFYlViXWVJR1lWaFVYPlVVdltXQ2tSTEdyYE9GdWFERnlJXlFJVGtYS29CdUN2aUtTWGNzUUVkP11UcFtXXV9nR3FFPm1WP11UamdDVm1XQENFVlNzQltJRlVXXnNpW1l5O01DP1F4XklSa0tVTl11Zk1kYT1Cb1V2PjtjPztzS0NIWmVIUl9ES21CZVliZldkbUFUVGNYbG1lUG9HXWtET2F2R3dDWlljdm1Wc21CUD1WXVNFYG1XW3NJRnFWXFxdR19BZj5vdUJNSUFnQ1VrRllpRnZ1eFd5WG5RUlFxZ01BZmp1dlF3VUpVUj5xeFhbSXZtYmpJZXk9U3hFc1hrUnA/YlNPRVRbeUBHWUlfZ3hFWGhVRlVbU0hvZ09tZG5hdmpPeEZ5aWp3SUVraFZFaWw9RmI7ZmZxY2drZURjRGRbeGZJdU1ZZj9ZUnVBZlZFV0V3UktvSWZhYkFrQl1Rd2thY0FRZF9TU0B5ckF5ckhVY0FpZ3BNcnBnR2llZHNnYm5xaFZfUlRbeUB3Y0VpWG5baWJJRF15Rjo7QkI7UkxATmRQT2xAa2RxdHJ5WG5NeUxIcmpdeUpIcWNgcXFsTmlRUD08bHFZcmFtbEtFUmBoclhpSlVFeVRtTzxMdF5wUHdFTkFAdWt4UGF0alJIVUVgXUNvcWBnXUpIZWBga1BeaXBGbzpRdERoXnlIcEd3Y1h2bGVBYV5hd2hGdVxcUHZ0TmNyV3hjYVtERmdpYXNSXmZoRl5Ddlp1SVpjQVxcXkldUm95aE9yYVdgcU55PWBhblFkR0FxY3hed1hfYT9kQGd3Pnh5T2BxQXhbdG53V1FcXHQ+XFxMYHVUX2FzT3heSXhiR3hyd2J0dndQdmtcXE5dZmF2Rk9fRm5lU0lwXXdiSVByUW51ZF5lckBoYmZfWEB4dGBecFdrbG94WWBoS2BjeUlxW05cXHJ5dU9HaVZwaEJRXmRudV9vaV1Gbz1gcUR2ZVRvXFx2XnZlb3B5R2dAUWhAQF5ZdmxAeV9ZV2hUYV5JQV5laHlWb2pPaHVfR2U+TmhmYV1FUXJJdnBiYG5NXnNCWGt1SXZIaHdnQHJmP2pWVmNBaV1VQGxtSHFzQHFfdmpST11Ldm5qUHBcXHBfcV9mYGddSkhaQ09hX290XFxGXU5mZkRxc3BAXmNZa1ZPczthaFBPbGlHc2tHZWNndjxRXkFpX0JRTmtTaUhRTFxcVVldWERUeUxBTVNteUw9eUxNU2ZJdXJ4cWA9WUZsb1U9c1hEcHZUSklAbl1Na1xcZFFSYFZcXFBweTxzeEBTcEBqY3VWYFR2UT1YaUxsbnhQTEx4XlBLRHhrUHRTVEhsSFhVdmxrbmlSS2RLcE1WUXRvdlhLWXV0WFVZZ1xccFs8bVB0a0c/ZEV4cnhvb08/ZWR3Xlo/dHZnYmNhdXNGa24+ZWp2dXZgYDxveUZgZ2c/cGtIdERmYXVRdGx2ZFpxckdgX1JReEE+Z3c/bGdhXFxeZnRNSGNAVmBhRmU+Z2xnRl5IPlpMYWpeVmFbd3Nfdml4YG1uVnJISWR4P2pld3dTPltZdml2SWhNcF5HX3FhdnVbP3lUbmBmP2tGV19AeWlFdmA+X2Z2SGw7eHVrUHRoRndFVmxsR3NUX3ZKVnNfYF1maGJsR2NkYHhGXm9BUHhGTmRHQWF1dmprQGBzWWxkcHNnTl9zZm87RnhmZmVgQGZRb29WR2VURmxdbmF3YXhNQXBpWV1jQVtzYGRBSGNDYHVERmJYUV9FeWVEdmVUcWF1Vl9TcWVLaF9ab3g/T3A/Xl9tSFxceFZqS3F1X1F5U2B2UWB5U0ZvUl53cWFrb15rcHFebEdmXj5fS1hna0FqP1hnP2ZeVz51Q291dkhpW2Ffdl9nOl53a3hbRD9ybVdaWllvaFBxREFpPF9iQkBsQ2FdVXFwbk9wZmlbR3h2dUFoWEZfTU5jeGFrVnBgRWFdPEFwaG5bQE5gZD5ga05sQ1huXUdcXD9PZEFGcUBfbGlJcmtGbmtuXFxpQXBlRmxoVmpFXmFsT19DVmliRm1KQWRTRmtAP2RgP2ZVcGBnT3BhV2w/QWFiSXRTaWRkYGRrX2laUF1HZltYaXJhT3VuSGdNVnN5XnJSTmZBSV9lQF1cXE9wREdhT2BqUz5aWFFsRWZnUlhlUlZwXUZpQmhmO3lrbVhoQUllVXFyRkdcXHhGbl1nXT9BdXZWak54dVJxZj1JeFtvbEtwWmhxXFxbdnlNeGN4RmhmbnBXaGF1b1xcaUd2PW5rSVBpQlZhXmBtU3lhUk5hRlF4UXBlP2h5PWBubF5naXFqakl1R05za3BmW1lzbm9rTz5yanF1Zml5XkdrSFhoVUZzaT95RXBid2dhXFxIYFhZbmJ4Y3VBbl53c1hodWt2ZnBpcUlOa1xcTnBmYV5Bb2tWPnhjWV1wXmdqSXA7PnBBcWFiRnRWQVpSb15OYG1nSXNcXEdfVVlwRnFeX0hvQldtW3lzQklnbXBnbUByclF0bGFbVmh4RHd5PEljXkhyaT91SmBmVFByWFBiRHBbWV9eSWZmcnZocEFkTHh4akddQ0FePV92UF93V29hY0FrVWFbdmFrPFB2P1lreWd5b3l0d1F5b1lnUXFvV1h2aV9ya3Fxd1d5PFlzTkBfS09eUHhpQlh2SFhyO3h5V2hxPkheYFZqb25hRk9rXj91bHZycFZid0FpQ0lwZj5hS1B5Q3FzYGBkTldmRVhbWHBnY1Zkc295XFxIcHNvWmNRb0t2aF1eYFdGclU+eGZHeGtJeEl5YXlheWF4bXhPZ01XbEBna1RmeGJJdD1eWl9xc3V2d0ZgeFdAckhnZnhnYnNuWj54Zz5AZVRudE5gbE5GYTxgd1leXnFAdkk+XTx5ZkhJXnVuYVZfaEtod2BvY19ga3NuWWliTHd4QGliWXNyXFxtZWtzcnlbY1VDR1NcXFJUaFJ3TXVBZHJgPE87eVdvdXdyYVVCZFJeQGU6T3c9eGdaTnk6WHNOV1ppaVs6aGlpWWpMbnhUSVtoXl5DQGtmaFtqWHlwTmBbbnBWRml1X3lTdnJzT3huT190cGxGV2RGaGF0RmN5aGtzTndOPlpWcWBdRmBwYWpgWGVsbltMaXRTeHFNRUhXdXQ/SFtBSGhJcmdVR1J1cmFbZlJTWWR5Vk5bSW9hdE09Q2RwUGdNT11FUXhNVW1wVkdRb1F1b1hpcGV1dFJ5eUNcXHJnPFVHQXFTQFdGSXFgeE1SXFxzSlRYbkBYVkxWYHBOTlFYX2RSbFxcT1RYc3NsclxccE1EPFZASGpNdHlqeExfWHRnPU1YeVFXTVdhPFJvUFdPcVF1YXdteHhYWVlJQXk/VU5BbWs+PVxceUhkWnBecEFrUk5yYWddWnBlQ0hsU0BhRHZtYj5uV3l1XnZzXV9dYWd2W1B3aUZfOlh2TkZnc19lbFhcXHBZbExZcXRud2BBXFxqT3VddnJxPm50cGttdmpyZ3VAWHV4Pl9bYGdvd29eVl5UYXc+YGJZWW9Rd19kR3hSaXJldnVnbl1pSWNsSGY7dlxcUFhnUGFvUz5xVmFuWlFoPF5lST92bFlwZD51d1BqbUZjREdyTUdjckFheEZzSXlaYVhgamhzTUdlVXBvTz5xVnFrO0hsSmh2bXlqY25gSkdyUHhbTD91WnZ5PFJMSUdqWWlCWXlfZ3NNRXJQc0JDSVNLVWhDV0xKXFxvXlhRPm1wSmRZRXBMZ0xNcmB1WExObHh1ZGhUZUx1X0FsVGxVdmxMeVV5VXl1XmlXSk1VdlVXZExKUHFQdUhNQjx4Rz14bWhUZGBUW1BMVFFrT1RPalFNQU1WeU1xQ2Bvd1xcdWxVc2dkTGRcXFRKWHY/TXNtQXddeGtMQUxNPXBhYHhRVFJjdGpSYHRvYFhjUXRuYVNzbWtkXVE+QWtHYW9cXGBQO3FMUVFXVXFwZz12bHVSOlhXXnR4WXlZeWB2Slxcc3U9U0FIT2Fxdl5UbU48bUg9c2dgSlBxWExFVFBJWWppcjpocE9oV05Ia2Z1d1hpcVtYTT1xakdUU0NFU3NUWXBhd2pJdj15ckZITW1wV1dRUXZoTFdYWVpAU1M9cFpFclF0VXZFbEdJbV1AUXVkTkx4UXM9SnJVSkxET1NBUUV0cUl1bXhcXE9ebXNRYEtbWVh4cVJ4RWs+eHNFPW90bXhmSU1KZE9aTW5EXXdfPHN1SVBbQW5tPFRFPG13WE9jPEp2TE9fbVRWWWteWHVCVHZAYFdyUHZBeU15XXdrcFc9aVdMYE9xQFl2XVdvdW91ZXJgWEp1RG5ETEtvQFlWcU5DUVlmPUpWcHZQdXhLWFdrQVhbRW08TE9fUU52RU5IXWxbUVRTSVJtSHBLeG1fbXdJeXJrSVNwRXJ2bUp0dE5fTFF2ZU9kdHA8eWtNTW1CREpMZGs6SEptRXJQdEplcFRnUHNDZE5TcVA8dFNdcXJHSFE6QVg7cXBDVWxgXFxYbE1NP0x2QXRYWWlZcVVzUGhPPXRsVWhTZklxZHhUaXBPTVFWXFxlT0dQTW9MT1ltcXY9dmxVa0RQakFVeXBpd1V4UGltTXJgdWpRVnFteFpZaklMc15cXGtIYWtKZFRjUFRfQHJ5cVNGYXNSPW5QdHM6SWo9VHVvWFdBSGo6eXVxbXVzdVZUYXBjRXZXcGtXRFFKdHZAdHBabE1GWVJGXXNdSWpBbF13SXZ0RmFHb2c/T2ZBV19wSXg9WVpReG1uVlt1WHJKWXNSYGJGQWpPYGpgWGVMT1pHWGdLWHhfcGs6dnNpRm9Vd3BoYF9uTnQ/R3JKcGdySHZAbmteX2hAPnhVeGJYRmlePmhzV29xbnN2SGs/QHBsWVxcYXhyUl9kaGBlU1BeU09hSEFoPG9kQGZhO3l1SW5hcmVhT1JiUUVrS1Y+W3VXXXRoPWI+dUJFV0ZbWURrY1ZjVUZrWWRPdUJsQUJqcUJeW1lseUM+QUhaeUh0c1hoYUVyX3U8a1ZAVXlqWXJJU1NbWXRqT1JyQXhFXUd2bXc+SXQ7bXZgX2ZyXVU9TUZpeXJ1YWdKY2VcXHdja1dydmV2T3dUYmlCYz1GUWlmZGF0Y1dEQlN3aEtTalFjWl9YbWtWRkFoUVt0SlVjQWlXTF9XallVV1l1b0dlVklpbVVHSUF4QT9pSnNpSWVHWEdUXW9SW3NnPHNTbl1HdkVkcDt1UFlTTkFFUG9UXW9SRzt4TVV2Vz1YUTt3bjt3RUV1bGdWRWlkZXNyQXlmSGVlZFl5U2lkak1ld0tZbkFmSndDWUxNQ2FtPUBXdUVwXFxlckRgTGNMcmg8SlhQbVh1dkl5bVltTEtFbVdZeGtZUGFtc2ZIVW1walhVdkY8dlA8c0k8d1ZgVj5AcVBsb3JEVjxhSkRBVHNgVD1AWDx4VUFUVEF5a1xcQEpJdVY6TVhAWFBacU1aeHhOaFE6YHJKaXFLTWs9YXNjYFRjUFRaZXlObFNSaVZdXFxMOz1qcmBNS0RPcHhQSklvO1RKQDxsVUx2XmBKeVRMYURuPFVPRlxca1xcSEw+cVNpUVQ9WWs9cVJDUWxfZFZDdGx2PHZHeFBYQXNsRGp3bVhmQXVrVGpUWUp2XFxMTmlMPUR0ZGhUZXBTV1BRP0V5ZEluYnFQb1xcVVpAckpNWEZYTkdEUGlcXGo7QVdQTE9OPU9qeXFJYFVbZXlhYFFScEpuUXdleG9gWHZWWU1cXEBRPkxOPHlSalxccm5UeD1cXG5BWFBvPXdzdG5CYU1WQFhVPFRpTVA7PExFbFd1TE48RFRgdUtPcFZ4eWpJSFBjUFZNeG5FUGxSTU1wXFxXQnFMQVhQOnVUPXFxVXVUalFZPElZQkxsYnRNZWFYPEVNZU1XQkByYEV1O0VyUEhVcmFRXFxcXFZvcXBqSXZfPHdabXV2SFltaXZFeXI8eXZUSUtlbEpfPVRObXQ8QHhTeVBYaFF1bWx2QE9yaUtJYEx2eUtYVXRPPVFTVG47ZE5nWGpRXXJPRFVXRXdgSXZQQVhKTGF0RltZTlpAT3JocFp4SGBqR3F5ZkpNRXhbWXJ3d2tRRmVBQk0/QldzRXlrWXZRdj9ZY2tVSEJzU3A9UzxBV0B5ckFZYmtNRXU7dE1VY0FPd3dhVVVNZEtvQ2hnRD49RGFzYnFZcj9fZFVdZnlTSUM7Y3NJc1o7R0dVZXBjSGJPRlNpR25HYlhVRT1xYlttaW5Fd0xrYlZrRD9zZ1RnSXVtWGNnQ0pFRHJ1RVJxQlY/Rm5xZVZrd1BfVHJZaU89VVo7dUNjZGBHclA/dWdLdkZhdEpDZkZhQ0tHQ3M/RkxfQ3Btd3JXWHJNRl5lY04/ZkpJRWpdYndPdEBnQ1U7R3k7aWNxZlU/eHFJZkFvRTx3ckFJSUNXVE1tY0JrQkBzaDx1VlpPYj5bV3JrR2hrQzxbcmlLQlVBZmxvSFJpSUZpeHhZeWl5ckFHdzxdeE9PZj9VYzxdVXI7Q2FvYmpBcj9TVUJtYnJFRmJdQmFXRlpBRG51V3JnQ3JtR3BZSW5JU0RxWXJTdD9JUmBhRVZdZXlHeWBZZVN5dzpXU2tzd1tfaFJPdFNtWEI/U1FBSVdDclNLZm1fV1tLRDpXUkFPUjxpUlh1WXdpeENJc0NBQ09JVGhxc3JxdGdNQk53YjxTQk9Jc3NtUls7c2hjQ2tbZDtXSVV3WFdpWFFzWUtTUkZFV2hrQldXV0tBVFhraEtPd09ZZ21FSFlDckA/eUdrZz9JREVbVz1HRW07dWRzRFJBWFdNQ0g9aGttZVZRY0JbUkRNYj5vRWE9YjxZdkBxdkl5ZUlZc0RFWD1haGdpRFNlSWtHWVZHYl1LQzxxdUJHRF1LUk5zVGJLWTxjeUFTYz9HZVppcnNZeGF5Z25JWGRDZklnSFZLQm9FeGJnWT1JdztDSWtLTltkVERxTzppT3JtVVdgTHhsalVsUT5MdTxYUGpQVlpkVV5EdkV5SkJUTnRRVlJAWEs9VXdsak9AT0VEeU08T0ZcXHFfUXdPWW9VXXBiRVJfZFRSeEt4dGs7ZE5kSFJFWHBoWXFpcVFMSU12QVh2bW1cXEVKT2B4VHFwZ1VRZj11alxcbW1JcEFxTV1kTzx4WF9kT1xcbExFdGpWbExpUEp3SUp1PXJTcVF4QXldXVZIcVJCTW5fbXJaeU1NcE5HTVdZcXF3SFBgYHBJTEtYUWpIbXBoZXVUSFFWVFdmXFx2PXh3XFxhdkJATkQ9VFxcTWpXQFRqcVJgbVJVZXlKVXRUQU92RXY/TFRMPUxSVW1RbVBiPXQ6dFJQZE9UXUxKZHlIRXVcXEluZmFuc1V4YGFUWUVZckl2QUhvTlxcWT89alhZUnNIVmldcVNZUFxcPExldE1mTGtEbG1OTVI6UEs8VXJgdFNYYFNjcU5PZVBVZFBkXUpwTVJnQExkbFddQUt1cVdWSG1UTE5KSVRkRE5sRUxPYHNPbE89UE9lQHBnXXU9ZHdXTFJ3VFlcXERKcmxTZlxcamQ8T05ldD5oVz1RTEJJcVF4T1ltbUhtaz5wSkY8akVscHJZc3FJU0ZES3B5bW10Vkhtc1lFUlM9d0Zpa1V0UEB4dFpYalV1cGhlTnFtallASm1UcWhRcWVBdUdJdEVsUWFkcGJAUWNobmNZS05FWF91aXFxcktPa1VxZXhxYkRAYld2amJWWltvWmhmXFw8b2pAUXZhVmpBSGZSYG5WTl5HQGRebnJfP2A+WWNoWGxVWWJGSGRdcXNgdltfZltrRng6Xl5NYXlNSGtuVnRlP3RoT19LaVo+YXNnXmpQPnRlUWY/UWs7R2Q7d2NTWGVaVndfUGNbYW9TV3BSSG86WWNqUXBabndhUWxUQWJ5P2hnXlptbnFfPl9kZ3NUaGBbSHlOUVpaWGBdVmNbQV1GbmdHb2pGdlpsYXNtdnM+V2RHQWJHP3JNcFBxaHddeEt5UnJJdndXWXFxQl1nd09ZZ1FdZEFRZTxJRk9HV1tbWWg9Y1o9aVtFd2pnU1NpSTt3eVthVTxnV1ZfYklcXEpdZEp5TXI8eU9LTW4+YEx4RFBGTHdcXFVWXkBYWDx5WUxYRF12dUB2Vkh2ZUFsa0VybWZqO0ZxY1F0X1hbQF5sdnhdZ25zXFx2Zkh2eUBIaj12XFxbZmBdUFpDPnlHbmtacWB4YHlsWWNkaWJseGhfdnU/Z3FCP19PXmg6eWVPT2hUYXBjX11MQFxcXnByR1hdQWdnVFZuYnhlaGZcXEJAYVJedWhpdXVYXT9naVR5Wl9uYXhuXVlpbnRJbV15aGtPaGdAbl54W3VGamtvdkJnaktHYmtBZ2tBcmtGalRAdEA+cnhRZXY+cE0+YTtPeHlAdlFxeURJbnJIWlNBXFxbSW9pYXdnR3NWR29jSF5xcGhKeHFCWHFtQHFNbmFIWWVEUVxcW3BuPkBeWm50eEleRXZmXXlydz5kVndeQWljbXFjSmh2akdyUHh3Xj5sVEFxX3ZcXD1Wb2BWY2BgZExYW3BQcExWY3hYbUR5blZfYj9AZmNwaDxYaGxPd0N4Y2xHcnA+XmBJeU14YFtRcmZmWlhYXmNAXnhXYnhOalRfZG4/bGBAc0phbj4+anVeZW9QR195R19UdD9oTTtXb1t5aUtSSGFyQ1dES29FW3NIPF10O3l3P3dzR09VP2NycW9XVTt2dENpVktWbHNFPkdZaEdzbVdyP2dVWl11Y11IY2NFYUdGQHlGY21ERWNyQ1NZQkdSRz1TaT9mXjtUbWtZaHNIQklIYztIbl9kVXdHcktydnFiYUVpTHVmQE9zQT92b19nQ0F4PTtjPV10XFxPdlBbRk5NZVNXRGlTdkF3V0NPaFRnWWxJc2E7dE13Z3hPeURzWEV3RXhJeWF5ZXlPeWRZZ1dXSXFtaVxcS0ZVa2drb3ZQO2hnW1lSZWldP3hzbVJLQ1NVV1U6YWdhQUVOc1JbWWhxTXZUO0VoZ3J4XUN4Y2N3V0dIQVJhc2Z2UWNzX2dubVROQVlcXHVnSElnTmNpOldEYHV3RFdiXj9IQkN5Z0tVbj94W2NmV1NJcD1IdUNDa2dyPVVVV1lpbz9ZcllpSEdkSEVYX2ViaHNFWUlSaHF3cnNoU1lWRUtlbnNIOmtyQm90ZXdUSVlWZVdZRENieEdybWNyYkVDQFtjRFtGUVd3XFxfd2dFZ0VTc1N5RmlBYjxjY15VVHN1eXd5eHN5eGxzZFxceVNMV0NacVJDc3hERVhnS0dcXE94dzt4V0VEZUVWeUtSeVFyUVtEZjtVSm9JRl15QGtpSUNyOk9naEFoZWtHUlFYPkVCQlFCc215RGNoUz9kUEFUP2R3YWxSR1F4P0RvWmFsQlhVTl1wclFqeV1Pa3hNVm1rUlVLT11YQlF3Slh0QlFqZ3RZX0ROW0Rqd3FWQExXYkFOdEBsXXhuWWBLO0BOP2FSdmxqWFFRaGRZSWhWSmVTSFxcdD5QbkJkUz49dnREUUdYUVFoeWI9dmBhc1NYcm9EWVhMVnZNbERMbm50WExIdUNkS2t0V0pAU0t1VlBhb1NdTFZAb3RNdW5IV01NU0M8U2tIU0dBcVE9c3VBcEtpdkJwWE1dbF9Rdll0cGJweXd5d3l1Smh0c0NUdld1VnJNbl9gbzpkUlQ8WHR1TXY9eDtMTGtddWR0U0l0amo9ckg9bnY8WUVxeERIbEBkT0lQckJFeHRZUWBlVWpQWUx4TkdcXE1VPU9pSXdGTVZhcUxqZFhoQU5wXVJlUWtPVE9MQHhDaXU7eUxLVHZbdHNAcUtNcHM6SVJUYFFVXFxxVkVqPGRKcnhXQlVyQXl1X01sPlVUUUBzRUlwQVRub1xcUl5pUXJtU0ZBajtUSmJpamZpUkBobj9ZSkhcXHZyUGtBTGt0YXVtdXM7PUt4bG1gXVNnSU5ScG1dXW5NXVJQaG06YHl0aHNnbXhybVNdTW1VPEpdTHg7ZVVWcVg/b3RcXFldZkFlQ0F1Ym5pRVF3PGZxWnZuZl9gRD9sOldyUU92UVdsPXdmRV5yS15dYVBoPFZ5RE9zeT51cVBwX090b0BvS1ZydnFqaFFreFFzQ2dwblFqaE9sY2BbV3Zub19gdj9sPEdfcU9tY2Fednd5PnlbQGhbVW5ibVh1Ynh0TUFvS1deZG9jQ1FqZ3ZyZE5vdFFoTkZuTkdbdnFqPHZjTXBeRz9tXWBddj5pSm9cXGZHaVBmX2lOX2BRY0lfa115c3l2eT5feUhpbGV2XFxCP11FT2xOSF1rP2tEcXNAcXZuRmBITm5qYGRmXm5AQFtJRmBcXD9db15iUkFuckdfQWZba2ZrckZvU2ZoVT9hOkhoQkZuW252a2leQEFqQm9ib0ZpVE94PWF1TkBbdGZybG9rRl9naV5oVV5vbWFgdUdrTl9sRT5sbm9adD5zYT92dj9qYj5pbj9aTU9aS0ZqZ0Fjd0ZaSnBhR25ddj55T3hkWEdqUV9rbEFlbVdbUnh0WUlwaklmb2FedE5lRG5ncmhgaFBpbFdbUnBrTUldYllfZlFnQldfOk53SU5wPWFeWWlyaVFsYVdqUVhqcXhmUEFjcUFaX0luPFdbSWhgV29rbkBbaElsREBfTklyW3BlXm94ZlVscWdWV3Y/d2RDT1RFd3JnZURJa3dBc3dgeXNZd3lEdWh0d0Z5SXVmR1VtW2lvS1Y+QWNiWURQYUdHcVM8a2VJQVlucVlIVVZUd3NyXWJXRWl3Y3NyW1JCUXdFU3lyS3R4RVNER3c/c3R3Z2ZzQ1RbT2JveXNydWRFa2hMb2NSc1RLb0tTVW5mZFhCUVVxYHBzVXFCUFdWWW1LUVlaUXVjSFBpVWtWREpZSW52VGpLYWtdWFdTeXFIcFdDQXFrTGtcXFxcdVVMVj5VUGNoS19QVzxsWXBoWXVxeHhoWXVRUXg9bll1cXhVVXFwVz9BdEFIWFlpakJVclJMVkxlUnFITmBhS09ta3JIWEpQb2lsUkNYbU88VWRQUW1hVHNwc0hIbUdIeENtS1NwclNIb1dgTFF0TGF0bG1VeD5YSl1ga2R1eEtYTkFRVkFgS1NMUF9Nc05UalRATEpIVVtUbEB0UkNQeG08akZUS19EdlVEaztkb049UHZISnVpS109VFI9eWxBTnVBTz1hc1M9eWZgS0xZc3dMeWJZbnBpWWxNbmI9WUNEeT09dU1RUD1lUHZNWFJES0RZdkl4UUhkdlZdcXJFcFVxUmdteVhwVkZkeWk9dFpISlJVTmFmXFxLT2ZhbnVJQWlGZm4/WXRuSGdNX25Nb2tnbm1KRmJHPls9UWJiVnhaP2hYbl5Xb115PmY/eGhxRmxzX25rQXlPbnlcXGB2Vl5kbD9gcmlbbWFbXWhlR0ljYWBraGFxQVBbcUBvXnlvWllta05rUF5jPFFaUXh0QUZdeWZrUHlaQ09lYF9tO29iYz5hYE5vPVloRVBjUF5nc1Z5S3heSWhpPT5tdXZoaGldcV91a0hnTXFecWBcXFZGcEpeZFV2aV9xZDxJYEhGb0k+XVF2YjxJclRpZFpAYjtGaVZweT9BXFxtZmlLWGJmdnNmcWJdSHFrTl9dX15RYXZfSFxcc0hgYG9rPV90XFxQbE9vXFw9QWxHQHFSRmRuSXdNeWY6QWo7bnJmeGk9QG46WHZ4WXhZeHlGcHZSV2hFPmV0d1toR1pVVlpbP1tZWHdXUGRzSWdFX15jWWhecHBSVmdhSGVyUWxrSHhMcGZzRng8UGNub2BVYGZ4SV5Xbl5ZSGp0WWo+QHRxb11EX2NGX3BZaFthVmV2TnhbV2xmb1t3UGlvUXhRUXY7VnA7X2xueGZMT19cXFZzSE9aeVl5RnhidT91WmByd1ZpcGF1c1hoYWlscEBpOld4W3d5aGdfWEBkWnZmakZoUnFmWEFmSmZaU0h5a2d2TU91cFZgPVZmaVFncD5pQ0lhUlhaQ1ddYHljVEZ1SVZxTEZpVlBzZ3BiYElyT3lkXVZ5W2F2TG90Tj95Rj5jW0B1YUBoVkd2UGZsa2dcXGN5ZVRvcGZHc015cmJoYl9WW3BQeExeaElOYHZocmY+Yl14YklwXWdpdVc+cmlHXXluaXY+X29vYmtQZ0NhXFxzP19zcGNoX1peRmVEQGJsWHNFZltyTmVCSV5gaV9JaG48VmNXYGJCRmZHeWxvb2FIdmdAcXVYYVxcU2drbEleWVFsRkZwVm5yRkBaY0Zfcl9ia0l5YXlteWZ5bll0WHltY0l0XXhaR2F0Q3BeUk9pTkFcXFt4dE5ZbW1eeTp2c09IYHJpblZQXkBRa1tmc1NoaUtIYks+aVQ+bF4/b3Y+Ymx2eF1ZYGpQdVJ2Zkpgbz9Yd15PeEBRYmZvd0FOZFlQeGtJdkF4XVRpYndvZ2thY1hgYVNxb1pAalpAaEV4ckhgaGNvcHJfaGhfZ3Q+cE1OakFxWjpBcE14bFhPaWNhckNYXFx4bnB0eGpgcHBiR3RcXD93SkluWXlpeWlpcnBta0FfYV9ka3hvXmFhaT5oc09fQ0hmcUhqRVlcXHFRWlxcb29lYHM+R3lXV15NZmxPeFt4UFtnZ3daX21HeF5jQF1mYWJYSGV4P2o9SFppVlpwTmtiYF1TYGZmRmZ4Rl49cWpGYGNMaWxqaV5eWGBcXGFqQG9xUEhzbmBfXWZhbkF0PU9nV0d3Qm5dXFxHZVV2bFZfbUFAZUBnWmNJY3NfZldWd0JQeExObFVJc2R3WllPYmR3b0ZIYEZ3eF9IcEJvYjxpbDxfaTpoW0FPaGZedV5odWdOc2Q/dmxgak5ucW5wZEhBbl5GcE1oYlpubHlgYzpBcUJQXndBal5xXFxMcHBseHRcXFFlV0hyZz55WkhkTGdmQU9fZVdpdklmckFieGBqbklzeEFaeT91WkhiPV5uPnF4dlBaZE53dWhjTGhbVm9fZHlpa2lyUW5ob2lydUlnQFFrbldmYUZyZj9aZklkO0d4eG9yXV50X0d5bGl2cHlod0lidD9icFltQll4UkF4Xl95YFdePl90YVFqO153PmhlcFZhU19xRWFzOkZyWHhgXVhmUWhbTFleZUFfdkdnY2lkX09tPHF0ZWZ5cmBuS15lOkhoZlFzRWFnTG9sUGlmXFxWc25pYlB4ZnJHW0Bga0ZPeFVPcHJhclFYbE5OY1BIbF5JdU5GdEFWX2pgaW5QcF4+bnZecmxudUJhalVoXFxPWGpZSGA+YW94T2R3aF5xQGZ3XmxfSFxcQ3FscnBrXFxWcW1ua3FBXkVZYExBbF92eUhRcFpXX1BQclFgYj5JcEpZY014bEdYYEJRdkRgXldgc21eXj8/bDx5dmxha1ZGXz53WmhHWm14dDx4XFxfd2dAdnNDWWFqT3B1WGpsPnBpX2pxZ2ZfSVt3QGNAWHA7SWtvYXdTWXhVeWd5aHhiQG5ybmNMaG5cXHBhbndza1B5XFxJeG5WZj9PcWtYXFxIWGVoV2RBQGc9PnZnWGVxUGFIT2xHbnZTdmtoV1xcZmdpOmhhbGBoUWBhUV5iYFddSFhob1BaXFxvaUBgdlBua3NQWmFfbUBheDpHZWp2cGdhZWxAXFxwT3lAYWNubm5pTmhTcHFGSGB2d2dMeWtFWXVaWWlNcHFAb2pHbnlTSHFsZ3ZsWG5LYHE+WGZAWWZWaGNLcGtLVmNIRnBmdnFtYWJOR2E+UWhuZl1BQGVsaWVQUV5zZnVMb3NaRmZnTmxZPmxAWF5JWHBwR11tcXFDQHFSVmRVP3F2T3Zpd2doYGNAbl1cXEd3O2Fua05wWT5oTW5hdU9cXF1vW1ZWcEBHaVZJZHJhYWhxcm5QXFxwV2FMWGVqeG1OeGBDeW9HdmxFeWVubm5NUXlAXnRMTmpUZmBkX2xdRmJDV2hMYF94UXZ1cGg/ZnJ1XWJGcE1WbUA/aUlPbF9Ibz1XdkBpa215dFxcSW5DbnBbR2lyaV9NTlpjX2dmT3RISHVAYF9iQGNwQV53QGB5b2pwcV1qXltVQWBRb2dBQXNOYGxFd3VsSF48YWo9QWtuYXVMTmxTQFxccXZrXkdyUFh1Rm9qW1dodkhsPlhqZUBebEBmRUl1SWBfUnFaPldrRG9dPklcXHhJXmxYW2BAa3hedUBAbUBvZHBeYnJvXUxua0JPW2VBYWdvYGhuX0h4alJPcFBuc1RpXmFxdlFxYlBZc01pX19XcE9YcUxuckh2ZD5vZEZmaFxccVxcTz93bUdcXGxGWlJRaEdAcUhxZGl2YkpYW3dQcEpRclNJbGtwaktIbVxcWGY/bmNwQlBVSF1FaUpXVkxvcndJUnNDd09neVtHdmhBeUZDdlxcdUY7X3RBSVhKVWNBd2hPV2Q+ZXNdZ3I9VWReVWdPVWdwQ1hcXGFSaXFESU1JeGNmbFNTbVdERk9jV11pTFdkXmV1UHViaWF1c1dkcFN5bDt3ZHd4TWFjY3VDT2tZZm1VUl1zUk1FVVNZPUVJX2V0a2doW2N3WW1kXzt5bUtobG1zWEN1YmdlUlNpWkVFXndScFtScmNGbFtDWFd2RF9IUW1XS0VzPGdXaGF1c0d3RnFyVDtTcEl3bD91PWlPQG1RRF11RXFYR1xcWD5BUW1kcGJAWFhgS2tkTnBUTD14alJtS1Z0dENpa0BAS0dQbWtcXHJmaFhAUUtYTW5LPEtdTXhjQFVuaHlRYG9DeUo+YW9nVU5kTVhZVHRrTXFDSFRgRE5IcE9hQFVDVVJdWVNiQVVVTHJhVXU+WFVKeHN4VFZlcWxTTE1JaHBrWEs6dG5STWxZTU11QHhTbFFKQU1ldXJ4YEthaFRMeXlCaVluaU1XbG5rUFBrXFxMOmVYY2hybUBWO1FKdWB0W2l1XFxJbkNNcHJIU2lxTElYdl5EVT9dclNJU1pkeGNgTUh4cnd1b0h0dlB0a1VxUWJMcFVkTXRNUmNUWVxcXFxvd1F0aEBxYj52UF5zUl5mO2F1a3d3TW54Tm5iWW9qaWZnRk94XFx4a1NGaT1mWkBWbnRRclBPZ3JQXFxkR2RTeXNgUFtSV11cXEB4d0hdP2BldHhpXV5oS2dnQ3F1T09qdnFrS3BcXE15aEd2W19Aa3g+aUJeW2RXY11pZko+ZEFJXnBXd3FZZFZOYE5mbE5Gc1J2aEhOa0B2d1tOclt2dmtXeHc+dUVZamNhbUBIXFxrVmprbnBfQXNUQGhObmlaUWhFPmVoUWZacV52T3hebmhyeV5PQGBiSV9HZmFWcW5ObmFxeVpHaG9lP2FFR2hmZ2pFd3dkQXFcXEZidFB2ZWZpSFFmVEBuUHZzXFxoYkVgXUNOY0JoX1h2cEJDXFxTW3NfamBGYUh3eUNubj9ZdnBQYVZQZXZuZ3VBblpZcVt4d0ReY1BHXlFJeEFuX3FGX0ZoZ0Y+Zzxeb1c/YFpOXz1XbXdWXT9gWnVHeTpmbU1BdkpebHE+dGB3c3Boc1VmXFxmT2duQV1haHZMPm9rb1pseXdsQGZVPnFWYWdsXnlIdnBfYGtuZmpEYV5AcW9BX3RqUXBxbmlfYGhQQWZpX3hXR2VqaHNCQGplSWB4d2RAWFplRmtrXnJOdmdGcGpCZltrSHBSX2xvcXRaZ19uYGw9QV1cXG9pOlltXWd4P0FhPUZgYFdmX2heU3Fud0hURUU/R2hEP2VUXVRpa2lyUVZ0UUNTS1NcXEF5XmdkYlNiQnNid1N0RV9lQ0doQUlDbz9iX2FDT2t4XmtYQEtSPHlIcDtlW09Dbl9VWVtESmNHWlVWZVFFTFFGXXFFYmdCZlVpTkt4V21iWEtkaVFjSlF2ZktXa0FGXkN0XT1XR19IbFtkUHNjQV1mTV1SSmdlSkV2RVNiYUlSSl1pVV1JSGdiaV9IcU9pSWNFXll5XlFCU2t2UEtoW0tyXztUVXlUTFdWb1tHTW9zZnVTSllmbU1FTnNieGlmR3FlR3NUaHVIPj1nQk93UlFzb0tDcF9FW1tjbD1DT0FyR1NyYEFyTVtTVF1TPD1obVNIbE1GQElFYmNzREFSST11a11CVmtUQHVWYWtXPV1TXW9WbltSQkdIVVtJQHdSVkFnYT10TG1DXT1jYz9lW11icWtnUklFZmdiXFxDZWtHRFxcY0lodXRiVXdqQ2RsS0ZQY2hiX0NcXGtlaFt3PktnTG93XWVTP3FCXT15UlF3R2tWOnN5OkN2VVtmRE9VOlFYYFtlTmtpO2VDW1tZalVDVT15Tld1UlNWR213SEF1XnFiVj9oS2FISVtVWG1nXz1JRk14eUNWU11lX3VGRmF1XFxJVWtPVj89WVVdSVZDd3JJWE9PY2I9aE1DVXJRZXNTWGA9WXE7QnBxdWRxST49ZGFvSFJpSXNlVHVVZWE9dT1neWpNVURneXBnVVtZZHBneUpJSUdzZEdFVj1xdnc7eVJnczo7Y2I7RU95RGxtUkBFclBfSXJnaVNZSFdXdGJnZUpJRWZ5QmVLdGA7aEBlaFZvc1p1ZE9FZ3RdVmFbSHJTUkB1Q2dJZTpbZnVteHBRZU51RnFrYlJvQktBRVxcbWdIS3U9XUN4T1Zha2lHV0Vxa2h5Q1NXW0JVRVlaR0ZwQ0Q7U3ZrZ1M6SXhDVUNeVXNwR0ZhRVU6cWRnaXc6XXVYb0U6Q3ZVU0VBc0J4eXhjV1E/QVBEZE9oTXJheGtTZEpXTU5lbGtYaXR4XW5tRHlPVVJvQG95ZExQaHJTVVdRcW9vXXVbWWxVXVFwTXBXTFNFeGpcXGRtSEFyRXBQdURLXmhwOzxwaXFMSU1tVWV1QUBtZUFRdE1RUllqV1BLWkx0VWlrUk1TSl12cE14ZkFLZm1WOnV2blxccWpEVWloc2c8dkJcXHdAQEtPcVZHUFZAZG5YcFJEXVJ4XVVobU9BeW4/aXFTVFVASVRwWVZOUmtLaElLRj89aFdHRExrV3VxRTxDRXlnZ01HVzpjeF13VkVTRURPd1JBRDtjY2p3SEZpcmFjRUE/aTtVYkBreD53Y3RjWGRBdUltVHRXdkhXSWZJdVRfckhpV0RTdWBnU1VTRnBnQmhzaGJfd2dBckVhZjx1UlM/eEpZUklDdUZdVE9dZUFHRTo7ckFTWUxDVEpjRFxcV3JqVXU+d0NYTXJQa0lAS3VQa0lTZWl3b3lIS2RxZ1ldY2RSXUNXO0ZES1Z5U1VSa3lBcWlBS2NucVJLO2Nob0VQZ3JTPXRcXEdmPXViXFxTR3g/WFtRYmtxRG8/WWB1c1hnV01bZFptaHR3eGJFeGJxZHZDdzpxUzxDV2c9QmZpaU9pWXRfaHI9clBfdmB1c2xrZ1VhUlhbZTpxeGRfVHdFaGFZZlpZZHB1dVFpV2Q/RmhJcmhnZVprSFJpQ0s7eGhdYkdTaWBVdWxnVkV1aGpHbmo9dWhgbmdVdXBwa2dUWF1FU1tESk5NdGI8dUxATGZRamc8dFxcaFJFZHBlQFU6VXhgaXNHUG12RHQ8dHJAQEtOYHJLcFVVVFlZWHBldHBJbFBjTXQ+cVRMXFx1PWh1QmVLUlVUUzxtaVF1b2FRPlVRdD1TcmhNRWRXPW1zbEBxdXF3dWhXYWBKSER2UkxNV2RxPlxceUM9eDx5SnlIWF5dbXBVcVNgWVFoU1VFWGdUcU5VUkNgbUtZa15YSz9oVmttTG5tamRdTkV1bGhkUFhRblB0S1JBTUxsVklwTEl4clB1eGhlT1hEYVVQdkRAPFN2V09DWT1GT1d2QXljQVlDXW1nYkN0W11jcVF4X1lzZ0FVQmViaUtGbW94dT90XmdzVXdITVVjYVtVSU9HOk9mVWlSRT9ib2FnVnd5WV1Ia0VYSGdmXVVWdFdJYUNFSFdzQVtFUXF0XFxxRWZhYkBBdWdNUmxzRnVvVkVzUlpBSUFdc2hFST9LVEU/Z3BJRWpJU0FpQ01hY2E/VmplaEBxc2U/dmtdRT1ZYldLZnZVVjpNR05RU3dJQj1dV1FhdltJVldjaFRTdmhBZXRTaXdDV1ZxSUI/dFxcVWdTS0ZKV1Zva3NgW3VeT3dwZWM+S0lgQWk+W0dGZ3U9YVNab1ZqZ3ZNd0ZJTUVBQ0hWa2M8eWhlW2deW1l1VUhQXWU7SXRFPUlUQUlIQVZ1dVRzZ2RwV1ZbbUZSX3dCc1ZCc3RcXGFHRFtIQndSb0tXTkFoT2dDcFFocGV3VD10UTtlPUdmWkVyPk1pR1NFcFtjVFxcVGlwVXdgV01NVHJJVlFEVmNgU1Z4UXlteTxpakVEUWxddmpddkN4VkhhbTtBdERpT2NkTkhpbXV0SnBMa3Fla1NNbjtgdGd1dUhxbXdUS3c8bjp0dXl4WXlla09NSz9QUltAeDtwWXdReVs8a0o9Uzw9b2xdVVxcYGs6bWpqbXZwcW9xXW5deFhdUVRbUHRIdXlUSUtbdFJkXFx1WGlQZGVZQFxcUWBkSzt4b3J1WVFFbko9T05Ma1o9Uk5hcnVcXE5fdVM/eHFCdXZ3cW9cXExNZmF2UklwXVV5cGl3bVhvdXhsaGRVVEhRbW1OWFFvUXVvWGx1b0xXW1RZcXF3d0l2QXhNajx4Z1l1cXhwQUBMZlhYTGFuQz1OWGhvVXVwcEx5PzxRZ3FyR1hNUXRPWF1ZQWlNcV1VdkBZS3FPa0B2V0l3TXluUVVvUGVvY1V0YHBqVEl2blhVcXBXV2VwZGVUbXBWR2F3TD1QeD1zRkhNbWx5cll2SVxcdUxoUW1UamhFT3lteXZpeGV5dHFYT29VeXF5d1lgUXNNWFNRcF9VVW9QV191dUxJeF15cmFsU1ZAVVxcYFJDVHl1QHlHWFNRcE9XbXF2RVlnUFVvYE1VPHJFcExnTFVrUFY/ZXdUaXBlcXRnWFdSSUtIVUtTTHZMaU10XFxYanhXQ2h2WXFwZ1VVdVBYaGlPeWlRdW14WnlyUGBPU010R215cmhOVkFwd1xcb0JRUmBxc1dYcVtVckB4SllcXFlKaVNfPE5hdXJXXFxSPEhseVxccl91WVFoVDxpU3hxTWREUmx5dXZIWW1ZSklcXFFaQXVXPE5zWVFYUWxxYHlDZU48RG9tTVlWZHZ5VFlwYXdVcVd1aEtdVFdCeVFSZGxSYXBjVWxdSFU/VE55dVlgRG1gUFM6bXlIeG5fRXl1bGVGVl94R09zWWllZGpBSGVfSE9NQllpcmJhVGY/VUtxSGU/VEZNeGJJdF1XU1BfR0NTaUQ9aHZpRWl4YHVXbz54alNnWmNpbltRXFxnV3BEbnJednF3cXhVWXFoUXFlcXV1d3dvaHFuX15OT3JQeGE8eWpmQXNycWBDd2dtUF5zWXFjYGpcXD5pXndmdEZddj5gQFluQGdrdEh2QFhdRkZ0XT9saE9xY3FuV1hhcW9vVkdxTG53RkFtPW9rXT5uUT5wU2hqRXZcXFxcaWpbaFtqeGpVeGd4SF1pZ3l0WXdpcHJmVlxcVnBcXGFQb0tXbkB5ZFlnaT94aGVwZGdQZ2JXWlhpckdhc1NYYGF5b3lweWxudFc+dm5gcGFIXkZQW1lRYE53XUBPYkZ4dnV4d3hYb1hncXRYdmdGdm5AYHM+YW9WbmFwbWl2ZXhedUx5eFl5aUl4dUVmeXBuZ0N2ZkB5ZFpBbltOWz5BY2Nna2p2W1ZxWmh2YF9Pc05eZVRxcEBfXTtJaHJeYnRhbmtPZXZBYlJOX0hhd1t2eW9Xd1BJdlhha1VPbGx5cnVwak1oX1I/cFpuZ0N2cU5pY3hpYkRgXFw7YFtnR3k9b3ByQF9ob2Y8YWpDbmdxYFp5WGpZWGpZUWY+RnFaX3ZJWHFXV3BgZ2traWVQR1txRnl1P28+RmNvRmFzRl1odnNQR1tMeHk8aFpFbml0SXdhVnlQYG52aWtbZ2ZPQHhKeGFoR1t0XmtbPkB5Ql1PRGpFWUNDQ0NraFNlQl1zWXltRlNvZkRddkRpZEVLSG5BSEN1clVNcklzeEp3aXFPU3I9ZU9NZWRDYklTdmA9RENhV21PeGdNZHJLYjtjWXBJdWFldUZNSEdlZGJLVW4/R15BVmVfQkV5dWtxZHZndmlpZ0xrRWBlRF53ZEBHVTtHSFJrVl89c1lJVF87WHNbQm91UmljRUM+bHlucWhfbVZZYnhdZ29kXnZpcWZsSl9iUGhtOndhSF9tckZaV2ZobnFqallbeWh5cFllXFxPZlxcaGdHYG5KPnBEXl48cHBvTnZZP2dbYXFzV3hWZl0+bmM/TmRJYGM/cXRAQGJkYW9jT2tAb2tUQWRmQGVrPnVqXmRKcXBAT2h3PmNNP29wVmZVV15ITnZod1tWPmFad3NGaW5DYWBKP2R2cWVVUV1DWV1cXFFuYXdzWGhwUVFnXFxRYl55d1ZRWl5uaz1IcVVxdEJvaEhYa1xcYXNwaGBMYHlRd29YZ3diQW5Tb3lecVtmWWVsQWx5QlxcYVdyP2dVX3lNYVRDZ1dVVHJJSXBpRWtfeXdgUExKeHlbWFJBcG9ObXlYUU9LTW9ORU92cWxXVFFwPVFkYEpnSFE+aVhnZWxaRWlWbmRpR3lhSXNNeFpxVnBkZ3RkdmBzeW5jUFxcclZwXUhla2B5V2FkPHltQ09pZWBaU2hcXEBxd0RnZFxcZmNzWWlSYF54Z3VXeWhZaWt1aGFzT3heWG52WXRuRnNpb3FzcXJLYW9Sb3lod3BeV21eTmxpX15KQXNnaGlVYF5TaFxcXkF2PWdedldzWVl1ZlBqa1F0bXBmR1Fyd0F1PVFzbHl4W2luPUdkQ3ZbSVdzbHlaeXhfUVBrakBzeWZjbVB4SkdbP19aU0ljWmZoQHhhYj5gbmFbPnZ1SlFiRlhcXHZRYkxPZEw+Y25eYE9uXl52YkhOdTpIZkBoZFpuZDtwalVxdUpOYURObEVmYj55ckZUS1NIVHVoaGVDYXFDbE1XVm9kTnVFcVNibkVyZ3FkakVXVkdmakV2PHFjZHdDdXNiUWtyT0lXbXlFc1VTSm1JVmlHP2tWXVlpcmdDVkNiPE92cVFyalt3VU1iZE1SQUVyXUdGa1NWZF9UU09IXz1ySkl2aUFEQmNFXUdESFdEbXVmSU1TZV1yY0VWRD9JbUt4QFN1VWtVeWV5b0FzTztWSj9ZW11HVVlGc3lHV01pTkNlRGtZZldldml1aEVDOl9LRHlRR2VsOkBMVmRUPGh2aXFeUm95cFBjXkhfeU9kQz5xY1dieEFxREZpWD9rPHFldl9qWUFpdWl3cVh2V3diT0Bec1l0alB1RT9fd2h2SU9fa2BmQ1FcXD52ZFVveWNPbz5uYkdGdXlob0xeP2lTXzt1XmN1Tk1yQUdTbEdVW2tWcmtDZXdiRD1ZRXlJUlNkVnVpeGVJQkliZ3N5bmNUXFxzWXhheV1xckdXSXdNeW5Fd0xpZldjU0xZdlA/c15DeVA/ZVdfYlxcTWRebVRobUZjSWZMQ2ZCeUVsW2dPVWdQa1dYa3dOcVhlRXJiX0JGUUNzT0ZodXNaUUNec1lxV1VsaVdMb3VkQ0Z3Y2dBR1NcXEFZT09HT11XYVlybHloR1FHR0VxW3RZdWl3cXB4SWhWT0BqTmBYcU1zYlBwTWBYY3hOXWxWbj13SklqcD1ZdVB0dE1QT2xNPUVXa0F5ZUVQakV2S2lvP0FMQ3BMSXh3UFRqcWVRU3BxZXFOeUFUTk1qXnlNRHV0SVluWGB3S2l4bVVvYVRSTVFPUW1vdkF2PXhLQHBVSW1wX3lzZ2xKeWVPWHRQT0B4aHhOQV1wZXl2dWhyOlF4cXl0b1luaFh3T3BwcldrW294Zkl1eFFxeE94UEBtV2BqaE9seFhlRl5feXdpV3dhcXBvZT9gWE9hW0ZeO05cXGp5dG9ZcUxXbEZmcT9ZWl1weW15c3lGaEVva09eX0x4eU9waHdBaFheeVB2cGhYX2NgWl5nbm9YbGJQcE1gaGN4Xj1ncVpBW3Z3cFJeZkV4bkJHbFxcbnhARmI7YXByX2luQF1iTl1zaHVMeGt0T2hiaV9YQGRUX1tbeHByT15LaXhFdmd3Rl1UcGRoUWB2d3BSPmV4cWdkRlxcRFdrYW5udHBpW3hwcl91VF9bO2Fod2FpbkBpPGl0XFw/eXd5eFlJbVdgamJ2eUpZZXZuZ2BnXFxGeGxwSGNAX251cGlLeWdrQXJiSGJObnhpeXVpQW9MXl55d2BtUFtAWWN1aGhXZ2xUYG5JVmFDUGh3Rm1SSWNiaV9AXmVUTmlgSXRcXD9rPldrQWlvWEh3XXBtVm5sUHZjQmg/O2JOX0VlRWZjUXRvWUNpZUlTR3VDPUdna0JQd2lBdXRJS3h5O1lqQWZVVWNba0h1b1lbdVdrQVluP0U8R3d0SWR2aXVUXUNbdXd0SVNPP2J2eWNXU0lgQ3VDTUlwP1lWUVVGQ3JyRVdMd2lnbVRLV3d0SVluS3ZdW3RcXEliS3V0ZkdVTVtlQGlTXztTZF9oVVtnVVVjQVl2UD9IZFVoYGVzbF15a09jbklWYUNmUVlkcWV3VGlkSj9kSltTRXdiU0lTQmdHQHNjVD1XRnFnXFxDeGJ3VnRxZ2FzYkxRVmpBZz9vcmxRR0w/RmVJc0xnZXJxV2tbQjw/VVJpYlVNZXRjWGRdU29leUxhVT9NRHBxREk9SEVTaUxhVT9NdlBRVmp5VkxHUnA/RWJJeG1vckRXdEpzRHBFeWhFeHJdYEBZY2lvYz9uaVF4YlF5X1dvXFxwZ2Vjd3RJaW8/WWJAZ2lJaWFxQWliYFpnR1xcdWl4UXlldWhwcl9xd2BwVWB5T0Z3PXFjPHdvYXZsZkZlTE5zV15ja0FkbFhsSk9lRkZnUFFiXT9oT0ZrQWdhbT5sdEF0XFxeaVFGdUlpbER5YU5wXFw9eGhnXmBwdmRLYFpjdnlHWF1xTl1NWXk9SHd0SXlYZ2JMVmRXd3FuVmVGRmxiR3g+UHRcXD9bbFh3UUZbTWB1cXhnWUlwXXdyaHFxdXFnWVlbdWB1VF9beFFFd1hFTG1kRHBmRXVsdHdoeFV0YE9mUXhLaXhtXVdrQVhESUxGUFNyaE9mUVNNZU5CbXlKSG5oVXNQcFFmYWpYRHdRbG90TVB3dUxYaFl3UXlvcXU/WWJLZnRiR2BSaXBKd3Vnbmo6X3dnUF5rcW9hT3hxd2xmYjphaHZpaHJtQ1hbSVJdZkJFRF1ZaXhXVUZDcnFleTxBdVxcSUNrRHFQZW9UXXBqWHdOSW9NbXhcXFlyWlRlRHZcXGheZ3Z2cV1OW1d3cWpxcHJfcVVfW1hWW3VAY3hBcU8/X0Z4cWhYZ2JWb0JfcXVwaUtAYENPdVFQaGdRdW9wcVFuaHNocFI+WkJBXFxsUHFcXGhkXm51Z25qSllxeEd3bEBwRWlvU3B3Z2luZ3FcXElgX0JwWnNAcEVxYGVAZnZgYF55d1JBa1FfYj1obTpIY0pXZ11ea2duWnZ3XFxYaF10TndLd2N4dmhoYW13aGdZeGJnXmBQbmRLYGJcXHBtZnF0XFw/cmFJYG5WXFxhbmNueXBEYGZkYXRjSHZXWWFoPnNoeGVmYWdObnJFVnFacXBmb2hMXmZFeFpoV190aWV5YGhjR3hyaHBSPndzT2hNcF5HT1tfZ1xcQ15tdWloUWllUW5iT0BbdVFyaEByX2lcXD95eFhZaWl4dz9oZWhPXzt4XVVHb0xnXllZaUFJaWlQXmtpb0xGd2xAUEF1dWtzVVlTXWlVdnVYaGF1c190b2VyYjtoS3VCcz9oRUloP1l2Z09sVUR4REBrbVhMYnBRQGhzS114eFhVRlxcbko8VF10a3RNUExpSklwTD1YVWdcXFB3dVRLYFJzaHI9dXVvaXFEYE5XbXhIWGtvaGs8QXhXXW5TPXFTdHVlQFNcXHh1b1lTUXBMSU1tV3VxbnR4SFh4akRTal1salFvPl1OcExLXWxYbGFyTXRTcnF1YlxcT25pcV1hcVVdUUhoT0Bga29AcGVcXGx3WHZsbXZGSXNXdXQ9dEpIPE1jdFI+VVV2bE1YTVVLRFJwTUo/cFhleE5BUHRcXD1uPFluVVVrO1RWRkBtO2x0aUlwRGByZ3VSV2BYVmVSXFx5b1hgc2dsamVkdXVsa155d1BRVkJsVk9EU255eEhYa1ZxUlttcVU/XnM/ZGppdXV4aHVZZT9PXFxwaWpXR3JOWWxdRnBqWGtGUVtZX2F3T3lueHF3WHZWcWRrXnJsUXJoQHZRR2xqcWlhbnFxTlttaXVcXD9bTG95a1hwV1hmQlhpQUlpUmhkVFBfO29fS3BoP1dgaFFfQkd5XVlxeFhda0FcXHhoeWhQXkxfdz5ZcVhgX1VfW3hxZEtAYXBAXTxGb01RbXR3eGhpbWtwZEtAeWV4XkFwcXFfbV1Xa1s+XFxuWXY7UG5zUGteTmhVZmprV2tbUWNlSXNKYXBUaXBlV2JBaF1VX1s7b2h3UXJ1QHBlXmx0T2hCWG9CP25MbnFxcWtFYWxJeFpcXElmT1hpP1FpaVBeS2hfQHZddXdSU2dCTVZtRVZRXUN4a0VCQ1lpRWY8ZWJ2aUlYO0dOb1J2SWhddXJudWdSQWdsV2Q6PVhVO0J5VXhHeUhacWVRXWRVQ1lqUVk+YWNgY1NUP1lecVJYYWlYWUZxY1NNd3R1cXVBY2JMQ2RHVWVwQ3JLW1VjRWk8P1l3S0hSW3lWV0dkc1RyVXh0QVZkO1VoRWdYd1hoTXd3U2VsY1VgQ0dNT1NKXURDa2lWRVJNO3dUZXBEdFVZeFF5bXlPUG8+PU9seXhIZXBdQFBDRVFOSFllcVdkRHBaRXI8XFxVVFlyXmRRcHBORFRxQ21qa01sbGB1ZWx0VW15c1RYYGFLd211dGxqOnF1cl1QUnhuSV1WVFBubGVzVGhQa3FveVBubGxxP1hNQHRUanlwb0RsaVFubGx3TXVQXlVrcFRRQ1xcSnFISmpBcWtVdlpoS0BteFNwdkZgVEFtVUltVTpZTnFMU014dGFIVWhAWF1peHh4eDtFdj5dVk9Rb09VbXF0V3hQbmxlSm1ReVNVcGBFdF1cXG9oYHA8aHZAWXdNYW9aRVlGcXZtaU95QXRhRE95YXhNeVNqaWxRXVBDRW1tUU9xRHl1TG8+ZHRkWVJORUtJaEtVXFxZRXlRd3BwdHhsbXF0aUBvVkVSbHlPTF1uQnhwQ21WSmlvQ1BNXlBOZGVSX11ZS1lyXlRwPEVUU3RRO3lYS0VNXWRUZXBUZ0x1VEBPVGhSX2VuYER3PXFTPERyZz1KRj9nY3dmSnBxWUh4Ul5zTWFod25eQ3Fuc2FgXXdwY1hleHhwdHhudVBqSVF4a0h3P2ZjV1FjQj9jalhlRkZqbnBmPk9pRmd1RG5mWV5cXElIY2xIbkJ5dXFhXl9RdF9YY3VoZ0dYVk1UcHFkeV1iTk1GWklpW1VSdGVTTG1iRkNGOkFUYGlndUFlS093VWVGPENFbVVXXFxfSEdNdHFxdD5teU5NRkBzaGBLQ19NZGw9d0lhZUlfdT1DU1Zjdmk/U1lrWExvVndDdV1VckBzdWdrZUpTVUZDd0x1U3B5dFxcPWRvP1RJb0Q9XUZUXFxxVV1LY1FUSW1LX2hyOlF4QXhtP2B5XVh0b1l4WEFwW2RVYERPQVB0XFw9bGx5cmdkVmZwb1k9WWFET2FIdVxcPVhVYG5WTHlQYVJjQXVvWWs+VWthVFZ3VFh4ZHNoeG1VYHlPbFFKaHdMaW5FTU8/ZGo8RW5KPU9ORHA9WG9OXUpEZGo8W3VGZGJeXFxEOmdlYltERGNiPEZ1Q1BiW0BkYl48RWRDSXVDUWY/VWNuPXJOQ3RLYWh3V1lxUWdWW0RYQWJMP2dNTVRdb1RiU0lzeVl1O1lkQWJjS2ZdR1dkQXNOQ3JqV0RvTVNkXXREY1ZhS0M/T1JbQGRwO0pwTW5KPU9OSlNJazxFbko9T05SU0ljPEVmSkpfdU5EZGo8RT5oPWZKbkhiPEZVQkRjWmw8YmxKW0BEY1ZhSzs+czxAa0V1d290aXdVWXVCRkVEV2NTZXNUaF9lRElSW2lDT01Eb0tXP112Smd3TGlmRU1HP2NiPEVeSl9ySF5wbVhuSj9fTk47YEc+X05KUztOU2JKPV9OPEp1PkRkOl1WV21YXFxXY1lnRGRfV0RjdE1jYkhrZGxXZFJRclV1V3dnZj1rZkJPQkBbQ1I7eD15Q3k7Z1ZbRFhBVW4/V0tPSV9jSGRlYmxXRD9SYlxcbFc6Ylc6YEc+X05KU3dlUllxcXdneXF5d3lcXGdOZV5YcmBAZGJePFZsUkdmYVZaQF5bSm9oXFxAa2JOeWFQYk9hY0twXlpgXkpnbGZHdWxIb2JedGJoXFxTT21XQF9OSltAZHBDTjpTQVJLU2RCRVM/XURoW0RhT2hQPUdOSztbQ2hPaWRRZ19TU1BfU1lvSXdfVGNPVG9LV05BZ1NVaGBtd1ZJaU9nZWJbPEVmQnVTcE1UeW9Zd1FkX1NrTkVvTGx5Z2xUZkB1VXhXeEh1eGhZdVFOP01rPkh5PE1PZWVqPEVeSj9fPHhiP1FrT3ZsaGZlRHhcXENHY0N3X3hAeVxcR3RcXGhidXd4aGlpdGF4Y0FgWE9eVW9adF9nXVdyQGhbb0djUlBiW0BEY1JmTWZLVWZAZVhkYXRjZ1Rlb1RnUXVvV0NOO0dKS3NjT0hMZXdeb1l3UXl0a3hEY2I8RWZKXXJga0RmO1VqcXhVeVdpR1Vtb3ZGSWVtQ0ZYT1NhaWViW0REZFpcXF5bUkZgXFxfYlFwX1dPdlxcUXI6Z19sbl11RndReW9Zd3l4VU9NQj9dYjpjd1Q7SFo9YmRHZVxcO1NPRXJFX2t5bG9AZW9MQUtFTGxMUGxYdVl3aXhLVW5AZXZHWW1xSFVtcFZPWE9RbXlVeXV4cXRaSFI9WG9oUEtVVVJAVVdhTEs/TmJbRFE9YkhjRXRbeW5ZdElVckBnQ3VNd2N3Zjo9VFxcQ1hDY1ZhSzs+W0RGX2NGX2lxcXVxZ3Fxd1dZdW9YZ1FGdEVGX3VGZGI6XUI/V2doT2lkd1dZcWlLQWlKT3NURWZKPUdOS2taRHVDXWxoXFxubHBUYlxcTERkajxFTE09dEhxazxFeHk8b1l1cXh1cXhleVRcXFBiPW5cXEBUPlRuZExPQWRQZGVSXjxsR3V0PElPTkxLP05CYURuV2hdP1RiamxaW1xcRD1qV1o/XFxwO09aUz1LQz9OcE1mSkpfWzxHTkNVPXNEaWtVVmloZXV0ZGl0ZXdzWGdJRXlCeVF5ZXlnZ1NVcF9SZ3FFbnVnUmViPEVmSl1WT1tVdF9YY2FzU1dIUXVVd2VoRE9yPXNTeEN5XklyPXdCbWF2Q1lieVd4YXlzSWlkZXN0UXlVeWV5cFl1aXVEaWtVdnV1eGdZXXdSSW9nS1VmQF1maUlGdXV5eGl5XV1VRnVmSXVleEF3XXdjeFN5ZlloR1llcXNnWXVpeE15bkl3TW9GR01zV1dJcUV5bGl2bWdWRXFmZF1mQlNGSG1ldkNZXFxhckNfaXNVeERZRkF5Y1lzYmlTVF9VVEJdRmFzRllDSWxddlRXV2hHZEFDdkRZWF5Bc0tnSXVtWE93U2ZHVkNRZF9jaXV1eHhtd3N3dlh1WXdpeFl3WXhJeUt3UlhDVFM/SVxcQ0ZbQ1ZqQXY7eUd3X3hMdWV4Y1lUeWhpdWlvVXdQXWliO1RaP3JoaXV1d3JHV0VxeXRZUFJ2aXlcXFlraTxORkFxckBzUHVQbDxSZ2F2R3hQWEFKXURVcXBXV2lYUWlVQXVSQGxLVjx1ZkhVbUhQXW1ybk13TklTT0hTS2xMZml1dVZtcGZnOlFpTU9kTE94X1lzcWZoZGF0dkl5bXlbWW5hdk94XklzQj9ecGBnU1FgXW9yRlBnT1FvY0BuTnZySGhdPW9mc1hnUXFvXFxmYkRgeWt5clk+Y1Zwd3d4eFhpYkVwXFxvYXdTWXhAWV1pX2V3UGlvTl5ZeVpZXmlKZnBBR3FkTmo7aXFjQGdLUW4/YW1zVmhoV3FncWBPPmtdbnhpeXV5eWt5X3ldZ3dUaXBaRnVuX248Z2pEVnVxeGdBP29HT2NET3J5WHhhdUl1ZXhjWWFpZXFNck9tUnRxVlxcZWVXX1V2P1lLQ3ZbWWZJb0lcXE1XPFtpc3F2VT92cU1zSF1EW11yakdWPXF5dXl1eVFieV1ldkNZbF9Vc09YWV9ZbElDbF9iT1VnUGVzVXdIaVV0YGdTV1Fpb1VSSktCU0VUO0VHWk9HV1dJcW1Zckl2QUd2V093T1lnUUFnS1VmP1dDUWtJd2F4TUF5VT1oWkVSYk9zSklmPXVFeV15a0FHTm9pT3NURGdjVXNIXFx5R0ZbVT9FdlA9SVM7SFo9Qk1VRFpBeWtZdnJZQ3RLVG4/V0tdaXJleE95VDtpd3R3WGlxRT9XZUNnWHB1dW9wb1FwT1dNWWJJbkFga115d3ZYeEhcXFk7UWtPVE9OdW1ORE5cXGFlYXFteW95c3laWD5pOlBjXWJ2RXlUbWhmRXlpd1l3WUNDSXhuSXdNeXNZd0lZdWhoZXVvVXdQSXY/T3NERUhcXF1yQltWTT9mYHN5SVlZWGVYTztTQ01TRE1DUkNzTGlmRVVzTkdHbUNYXFxhSmBcXFNaZG5MRVU/UU1aRXR5XXlreUpYXXVrdXJXTE9HdFJWdVl3aXhnUFVvUGxBTUxNVExreXhTeFZYSG55RU50eFBYQVldQFRbUFJTZW1XQGphcWtYZFF0YFlzUXhwZWtucFhnUXVRbE9WPUpJWFR3TVQ+QGtxcXV1dUtzUFI9cWpHRHlCSXY9eWpJcE13TGtORFFRbW9WdVRZZVlveXBZcVl1cXZVeFc8QEx1bFl3RFFzRFVfPW0/PXBxdXdYQXlyQXlBeU15XVVkUEtzYHdcXGlyRVh2P0x4YnB5d1l5SUltbXRuSGVtdGxycVVsTFBsXlF4QWRSbklwW1ViclllakBmO1ltaE9xQ2duW0FrQGdrVEZdS3FobXF2R0loa0doV1ZhcF9reGlzPmFoYXdaQ0BbeHFcXGI+ZDpJdnhYdlxcQWh2R3VsaGZ5aHlwWWVjUXRfaGRlYFxceEhaP093S1luQXZ5dW92RkltWW5pckl2UFhlaEdqUVZuXWZbTEdyWT5xbkd3TFFtb1ZnSGY9Q3JodWlzcXZVV1VpZWlPbGxESFBlPEp0SHhjeW5ZUHNdVFBhbXNGXFxuUGlxY3l1ZXFvdXBvWXVxeE14PTx0X0h5bXl2WVVYR2lQak15WjxPZXV0aGhvWGVxdFlWSWhRQHlVS11SR3RReEF5XWx5cG13VklVYT1xQURrXXlySXhXWXFxd2hTVXBQQGF3aWVWYURqT1VvUEV2aVhtVk14YXlzSUR1O1F1T2htYkxSO3VvWGVxXnlxQ0hrQ3huSGVtbHFtOlRReF15cllxaFFxZWlqUWxVcmV3b3h0OllWTm1qU11KT1hPUW1QdnV4TGhORU1KaGltPGhtdXRYeEB5XFxZa2pZVnZwWW9lckRoTG9YV1FxTXRcXFhicWtXVFFEeWxpdG9cXGRrYjxsQl13V1lxcUFzS25ndWh3cGBtc1ZoTGd3XklzYXZtTkdzPkZraXhxeFFdRmBhd2BeUFZ0V2htTXZeSF9aTFdtdXBzcXBtdF9teFZuSl9qRVZ5cGl3PXl1bGhmRVFxdz9aQ3hcXFxcWGNhcGNXYHZWSWA/b2xPZ2w6WHlmVmNqR1xcXnFjTklxYV50ZkhlTU5vT1BsTFBgcW93VmdcXFpfYktgbE5gdG5IZ01xW1dOYUZuXXY+cUV3bGg+YWxZeEl5YVFeX1I/cGRnVE9DYTtTRlllcXNDa21oaGV1dF9ZPltWP0tJVmNlZXdybmV3XkF2O1liY01oTUtVYGFmSl1iRVtkWkV3dkdJP01lUnVpeGVZWmNYXFxDZlVlRF5Bd0tZZm1tdkZJZldfZ1JZV09ZZ1F1V2ZBdWs/c2NpVDpHRDxJYj1zQnhxeXF5aV1LaEB5ckFZdHZpdl9Vc1BHdFxcO3hheWV5bVVRTVl1R3Z2SXltZFlvaVRqeWs7WEpBTGpAaXdYaXF1bXJGSE1abXVsdXlheFd4SHlgSXVhdW1HcHN3YXJuQVFXRFFsXWpMZVRJbFg8dW1LPT9RaW9Vd2p5dGJhd1pDQ3VrWGZBZURzUltVaE13cllzWVZtV3lveFBZVWllY1lzSVhvVXFBd0tZQmRhSGdNdW5DeWdnSXVIcllNVVlIb0JgSnRheGNZeF95bFlta1ZEUUxAb0M8VGFwU1dcXHZrSE9jRE9UcXRrQVI8TVI8eUpZXFxZOkxTQVVvQlhxcXV3WE1wXkVzdkRZbEF4QWxPV01xbmBWQ1FMZFxcUl9lWHBNUk5oS0xEWHZ1eFxcaXJFYHlTZGo8eU1aaFVtdXZIaVJUaHJkbWpGSEo+QFVIbVZUcXBnVXVIaE11XFxNYXVWZUxwVE1UeGl4UW92b2h2SmdsOk93dEliY2FseGZ5bllkaGZpYUFzS1h2SFlhaWFsc2l0S1luQXdkaGBlUz5cXE1GZ09Gdj9Jcj14WmF4Y1lwaXlpeXF5YWpBcj1uYm5Gc1dYYXFwcG9fYUpPb05HX0JAZ3JBeFtpdkRpbF1IW09XW1FuXz5wc01heENYaGFxc3d2eFZZaEdRbW9Wa1RpeT5haGFTdEVCT1VpakV2PFd2dV9Ydj9TS09GZGdURHNtPkV2c3lmWT5jZz93VkloQWldWkhfdXF4Z1lfUF9vUm9vVkdxYllaeV95a3lyeXZ5c3lzU1dwYEd3dnZpP1dvUGdvUGFvU1daPFB4WllqSW55bFlzaV5kdUZvUkdwXFx2aVpfdXJIaEJxYWlfcWtxYnFYYEZmXXReeFRYZ2hIakBHc1hvcVxcXmVybmhmQWVFcFxcZ25zWGhhdV5mQkFcXHNfeW5Jd01JW0NGW3F4dXhXcXBoaHZSZW9UZ1lkSW1JO0NiQENSQ1lkYXNzZkl1bVdYYFhYTGFuQ3V3eFh5aEVrTGROSjxYdWRYZGFMR2VxR0hXcE1Udk52VW9wZkdoVXl0QlBgUmZmYU5rSj9odlV2U1lwYXdJYUltYXNndWhXcWhaRXI8b1dXUWl3d3hYWVlpY2luUXRpd2l4UVVgX1NTV1NRb0dHS0VuO1d2QXlrSXlteXZRRVVjO2Q+bUhoXXVyR25HRFJHTW1wZFdEdG9XaW5FdWxjWFRhcHF4UXllQVlxRXlsaXZ1dXhoaXdVeXBpWHVReUxnTFVuTFdOQW9nVXVwaGxmRFVMZWpTREt2XXhLeVJlcXRnWHFvcXRVZWtXZFNwcFdXUVlkYXRjZG1GbWxgbG1yTXZDVHZCVW5OXW5FaXM+YVB1RG5kUXFVX2taaGc7YHRjRmdkUGREdnVyP3lbeWpBaFtVblpXVmJ0Vnk9eVt5XnNXWGFxYGRjUGRyWWtiWGRlcGRneGd4SHlgeV15QXlBUGRNZlpbSXRBd11XZ3BkZ3R5eHl3eXdjVmRgYFtXTmFOXlpfRmBrRnhneXBZcWJ0SHF3V3lwWXJBeFtJSW1tdnJnWXFacXFnVmVwYF1zTmheUGRNQHM7Rnd4bnlUaXBleG15b3lzPnZzQFxcSUdcXD1Aa2NvaExxb1dXcUtZbkFXcmxpd3FwY1lwYUduaExHbjxnWnc/YFVQXk4+XkFRdXF4Z1lebVFvcGZHdUB2W1heY2dZbVNXcGBnd1NZcGFGYXNGeV95bFlvdndGdU5Oa3hoaXVxeWxZc2l2aXdpeFF3cXhneWJJWmdYakBmO0FZXWlDYj9UW09SPzx0SEhQXW1yZmxVdkBZWGFxcz1udmBYXkV1bGhWcHFZbFBrSj1YYGFzU2hwZXV0XFxpUk9QT09da3FAV1tsbUBUS191TltVUm1xdkdZV05BbztZbUQ8U1pUanNgWGNRdGV1b3dwbklUT1FdakJgTXNMWE5Nb05Fc3I8S1xcWW9MSFRSPEpzZXBteXd2RXlsaXV0VXdncHVDZHloaXV1eFF1YXdtbFFsWXdpeHFoSFVtcFJTSVNSSXVDZHNndXFbcWpVXFxNU0lLb21YTFRMTXRQaW11VnFuR1VNT0BVRlhOUHluQmR4Ykl0XXV5eGl5bnBKSU1WQGFrU3RUWWVZb1VxcGV3bj1LT0R3P0xYP3BXZU1jTl52Y1BhcF93Um9xdkd5Y0hvUlBgX09zUklwXXdlc2d2T2ZtanZcXHBfXFxiPmRadmhoYXU+eVxcR3hwOnFbaWhxcFF1XFxnckRoWkxXX11AaWdQdkRoaT5pcnJpeW9vd1ZJaVRhcGNnZXVwaFdmYGRfXFxpR2luaXZReGV4b3lzeXZ5d3l1eXVvT2I6UF5XP2BcXF9yQlhiQXBbZ1F1b1h3VFhnaEhla1BmP0FqO1ZaXFxRdlxcUXdPWW9xd3d3eHhkQGhOXltKSVxcXj9kUXZfWF9pZElvYWBrcXBldkd4P2dsST9pS2g/Z0NsbWNJd2N5Q1lsYUZZW1NETVN0dXl3eXh5VXlneWh1eXd5d0VZO0l0XXhiQXlrWXZ1Z1hlcWZcXFFzOlNCVFN5U3d1a1l2QVlVcW9Xd29YZ1FVYmVUXW9SR29JdkF4PV1CPUdSPW9Cb0l3TXlSQXlTWz9UYjxLWkxqb1V3UGlPVW1wZmFqQ1RManl3SGhNdWxNdD13W1xccXhFeV95bG1ddkJXcWlxcWV3dXhoYUw/a1FuZXJHYl9nbmZhXnY+ckdvd1NZcGFneGRpdFpvcV9YY1Fwb1ljaVdVXUVHTktDP09yOkl5bXl2QV1jUkNYYGFzU19lc1NYYHFzV1dpV1VpcHV0WFVZZ3FoZ1V1QHdDWWtZd2l4UXl1alVyR0tJXWFSU0ljPEZOS0t5PHRHWHhOTEs/UFJbYldKP1BCU0FLO18/PUdOS1tfd15EOkxzSF88RWZKckhdPEJ1SkRqZk9CamxaW0BEZEY6Yz5QQlRBTjtAS1B0eVk8UVVMdF5pTHBcXFNLPEo6PEo6YG5cXHROXFx0VFs8UDs1O1wiXHtcfQ==LSUrQU5OT1RBVElPTkc2Jy0lKUJPVU5EU19YRzYjJCIiISEiIi0lKUJPVU5EU19ZR0YnLSUtQk9VTkRTX1dJRFRIRzYjJCIlSVdGKi0lLkJPVU5EU19IRUlHSFRHNiMkIiQhKilGKi0lKUNISUxEUkVORzYi
We assume that
* three additive faults f1, f2, f3 are respectively acting on the three spring stiffness k1, k2 and k3;
* a fault, f4, is acting on the first output y1 = x1+f4;
* the second output is y2=x2-x1.
No fault is acting on the system if and only if all the single faults, f1 .. f4 are equal to 0.
The objective is to determine, a priori, if the mathematical model is able to discriminate (multiple) faults acting on the system.
2.0 Studied system and exhaustive summary
Assignements of the variables of the studied systemLUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY/LUkjbWlHRiQ2KFEvU3RhdGVWYXJpYWJsZXNGJy8lJ2ZhbWlseUdRLENvdXJpZXJ+TmV3RicvJSdpdGFsaWNHUSV0cnVlRicvJStmb3JlZ3JvdW5kR1ErWzEyMCwwLDE0XUYnLyUwZm9udF9zdHlsZV9uYW1lR1EsTWFwbGV+SW5wdXRGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYwUSomY29sb25lcTtGJ0YvRjVGOC9GPFEnbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRkYvJSlzdHJldGNoeUdGRi8lKnN5bW1ldHJpY0dGRi8lKGxhcmdlb3BHRkYvJS5tb3ZhYmxlbGltaXRzR0ZGLyUnYWNjZW50R0ZGLyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGVS1JKG1mZW5jZWRHRiQ2Ky1GIzYrLUYsNihRI3gxRidGL0YyRjVGOEY7LUY/NjBRIixGJ0YvRjVGOEZCRkQvRkhGNEZJRktGTUZPRlEvRlRRJjAuMGVtRicvRldRLDAuMzMzMzMzM2VtRictRiw2KFEjeDJGJ0YvRjJGNUY4RjtGLy8lJWJvbGRHRjRGNUY4L0Y8USVib2xkRicvJStmb250d2VpZ2h0R0Zob0YvRmVvRjVGOEZnb0Zpby8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GPzYwUSI7RidGL0Y1RjhGQkZERl1vRklGS0ZNRk9GUUZeb0ZWLUknbXNwYWNlR0YkNiYvJSdoZWlnaHRHUSYwLjBleEYnLyUmd2lkdGhHRl9vLyUmZGVwdGhHRmlwLyUqbGluZWJyZWFrR1EobmV3bGluZUYnLUYsNihRLklucHV0c091dHB1dHNGJ0YvRjJGNUY4RjtGPi1GWTYrLUYjNistRiw2KFEjeTFGJ0YvRjJGNUY4RjtGam4tRiw2KFEjeTJGJ0YvRjJGNUY4RjtGL0Zlb0Y1RjhGZ29GaW9GL0Zlb0Y1RjhGZ29GaW9GW3BGXnBGYXBGZHAtRmVwNiZGZ3BGanBGXHEvRl9xUSVhdXRvRictRiw2KFEvUGFyYW1ldGVyc0xpc3RGJ0YvRjJGNUY4RjtGPi1GWTYrLUYjNjstRiw2KFEjazFGJ0YvRjJGNUY4RjtGam4tRiw2KFEjazJGJ0YvRjJGNUY4RjtGam4tRiw2KFEjazNGJ0YvRjJGNUY4RjtGam4tRiw2KFEjZjFGJ0YvRjJGNUY4RjtGam4tRiw2KFEjZjJGJ0YvRjJGNUY4RjtGam4tRiw2KFEjZjNGJ0YvRjJGNUY4RjtGam4tRiw2KFEjZjRGJ0YvRjJGNUY4RjtGam4tRiw2KFEjbTFGJ0YvRjJGNUY4RjtGam4tRiw2KFEjbTJGJ0YvRjJGNUY4RjtGam4tRiw2KFEiZEYnRi9GMkY1RjhGO0YvRmVvRjVGOEZnb0Zpb0YvRmVvRjVGOEZnb0Zpb0ZbcEZecEZhcEZkcEZeci1GLDYoUTFTaW5nbGVmYXVsdHNMaXN0RidGL0YyRjVGOEY7Rj4tRlk2Ky1GIzYvRmJzRmpuRmVzRmpuRmhzRmpuRlt0Ri9GZW9GNUY4RmdvRmlvRi9GZW9GNUY4RmdvRmlvRltwRl5wRmFwRmRwRl5yLUYsNihRJHN5c0YnRi9GMkY1RjhGO0Y+LUZZNistRiM2YXAtRj82MFEifkYnRi9GNUY4RkJGREZHRklGS0ZNRk9GUUZeby9GV0Zfby1GPzYwUSomdW1pbnVzMDtGJ0YvRjVGOEZCRkRGR0ZJRktGTUZPRlEvRlRRLDAuMjIyMjIyMmVtRicvRldGXXZGXnQtRj82MFEiKkYnRi9GNUY4RkJGREZHRklGS0ZNRk9GUS9GVFEsMC4xNjY2NjY3ZW1GJy9GV0ZjdkZnbi1GWTYrLUYjNistRiw2KFEidEYnRi9GMkY1RjhGO0ZqbkZpdkYvRmVvRjVGOEZnb0Zpb0YvRmVvRjVGOEZnb0Zpb0ZbcEZecC1GPzYwUSIrRidGL0Y1RjhGQkZERkdGSUZLRk1GT0ZRRlx2Rl52LUZZNiktRiM2K0Zlc0Zcd0Zcc0YvRmVvRjVGOEZnb0Zpb0YvRmVvRjVGOEZnb0Zpb0Zfdi1GWTYpLUYjNixGYm9GZXVGaXVGZ25GL0Zlb0Y1RjhGZ29GaW9GL0Zlb0Y1RjhGZ29GaW9GZXVGaXUtRlk2KS1GIzYsRmJzRmV1Rlx3RmlyRi9GZW9GNUY4RmdvRmlvRi9GZW9GNUY4RmdvRmlvRl92RmduRmV1RmpuRmRwRmV1RmV1RmV1RmV1RmV1RmV1RmV1RmV1Rml1RmF0Rl92RmJvRmV2Rlx3Rl93Rl92LUZZNiktRiM2LEZnbkZldUZpdUZib0YvRmVvRjVGOEZnb0Zpb0YvRmVvRjVGOEZnb0Zpb0ZldUZcdy1GWTYpLUYjNixGaHNGZXVGXHdGX3NGL0Zlb0Y1RjhGZ29GaW9GL0Zlb0Y1RjhGZ29GaW9GX3YtRlk2KS1GIzYrRmR0Rml1RmJvRi9GZW9GNUY4RmdvRmlvRi9GZW9GNUY4RmdvRmlvRmpuRmRwRl5yRmV1RmV1RmV1RmV1RmV1RmV1RmV1RmV1RmhxRml1RmduRlx3Rlt0RmpuRmRwRl5yRmV1RmV1RmV1RmV1RmV1RmV1RmV1RmV1RltyRml1LUZZNiktRiM2K0Zib0ZpdUZnbkYvRmVvRjVGOEZnb0Zpb0YvRmVvRjVGOEZnb0Zpby1GLDYjUSFGJ0ZkcEZldUZldUZldUZldUZldUZldUZldUYvRmVvRjVGOEZnb0Zpb0YvRmVvRjVGOEZnb0Zpb0ZbcEZecEZhcC8lK2V4ZWN1dGFibGVHRkZGQg==Computation of the exhaustive summaryLUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzZmbi1JI21pR0YkNiZRJXdpdGhGJy8lJWJvbGRHUSZmYWxzZUYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JKG1mZW5jZWRHRiQ2JS1GIzYlLUYsNiZRNERpZmZlcmVudGlhbEFsZ2VicmFGJ0YvRjJGNS9GNlElYm9sZEYnLyUrZm9udHdlaWdodEdGQUZARkItSSNtb0dGJDYuUSI6RidGLy9GNlEnbm9ybWFsRicvJSZmZW5jZUdGMS8lKnNlcGFyYXRvckdGMS8lKXN0cmV0Y2h5R0YxLyUqc3ltbWV0cmljR0YxLyUobGFyZ2VvcEdGMS8lLm1vdmFibGVsaW1pdHNHRjEvJSdhY2NlbnRHRjEvJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZaLUknbXNwYWNlR0YkNiYvJSdoZWlnaHRHUSYwLjBleEYnLyUmd2lkdGhHUSYwLjBlbUYnLyUmZGVwdGhHRlxvLyUqbGluZWJyZWFrR1EobmV3bGluZUYnLUZobjYmRmpuRl1vRmBvL0Zjb1ElYXV0b0YnLUYsNiZRIlJGJ0YvRjJGNS1GRTYuUSJ+RidGL0ZIRkpGTEZORlBGUkZURlYvRllGX28vRmZuRl9vLUZFNi5RKiZjb2xvbmVxO0YnRi9GSEZKRkxGTkZQRlJGVEZWRlhGZW5GXHAtRiw2JlExRGlmZmVyZW50aWFsUmluZ0YnRi9GMkY1LUY5NiUtRiM2MS1GLDYmUSxkZXJpdmF0aW9uc0YnRi9GMkY1RlxwLUZFNi5RIj1GJ0YvRkhGSkZMRk5GUEZSRlRGVkZYRmVuRlxwLUY5NictRiM2JS1GLDYmUSJ0RidGL0YyRjVGQEZCRkBGQi8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GRTYuUSIsRidGL0ZIRkovRk1GNEZORlBGUkZURlZGX3AvRmZuUSwwLjMzMzMzMzNlbUYnRlxwLUYsNiZRJ2Jsb2Nrc0YnRi9GMkY1RlxwRl5xRlxwLUY5NictRiM2Ki1GLDYmUS9TdGF0ZVZhcmlhYmxlc0YnRi9GMkY1Rl5yRlxwLUYsNiZRLklucHV0c091dHB1dHNGJ0YvRjJGNUZeci1GOTYnLUYjNkEtRiw2JlEjazFGJ0YvRjJGNS1GOTYlLUYjNiUtRiw2I1EhRidGQEZCRkBGQkZeci1GLDYmUSNrMkYnRi9GMkY1RmhzRl5yLUYsNiZRI2szRidGL0YyRjVGaHNGXnItRiw2JlEjZjFGJ0YvRjJGNUZoc0Zeci1GLDYmUSNmMkYnRi9GMkY1RmhzRl5yLUYsNiZRI2YzRidGL0YyRjVGaHNGXnItRiw2JlEjZjRGJ0YvRjJGNUZoc0Zeci1GLDYmUSNtMUYnRi9GMkY1RmhzRl5yLUYsNiZRI20yRidGL0YyRjVGaHNGXnItRiw2JlEiZEYnRi9GMkY1RmhzRkBGQkZARkJGaHFGW3JGQEZCRkBGQkZocUZbckZccEZARkJGQEZCRkRGZ25GZW8tRiw2JlEmaWRlYWxGJ0YvRjJGNUZccEZhcEZccC1GLDYmUTJSb3NlbmZlbGRHcm9lYm5lckYnRi9GMkY1LUY5NiUtRiM2KC1GLDYmUSRzeXNGJ0YvRjJGNUZeckZccEZpb0ZARkJGQEZCRkRGZ25GZW8tRiw2JlE3SW5wdXRPdXRwdXRQb2x5bm9taWFsMUYnRi9GMkY1RlxwRmFwRlxwLUYsNiZRKkVxdWF0aW9uc0YnRi9GMkY1LUY5NiUtRiM2JkZqdS1GOTYnLUYjNiUtSSNtbkdGJDYlUSIxRidGL0ZIRkBGQkZARkJGaHFGW3JGQEZCRkBGQi1GOTYnLUYjNiUtRmZ3NiVRIjRGJ0YvRkhGQEZCRkBGQkZocUZbci1GRTYuUSI7RidGL0ZIRkpGYXJGTkZQRlJGVEZWRl9wRmVuRmduRmVvLUYsNiZRN0lucHV0T3V0cHV0UG9seW5vbWlhbDJGJ0YvRjJGNUZccEZhcEZccEZqdkZddy1GOTYnLUYjNiUtRmZ3NiVRIjNGJ0YvRkhGQEZCRkBGQkZocUZbckZgeEZnbi1GLDYmUSRFUzFGJ0YvRjJGNUZhcC1GLDYmUSVzb3J0RidGL0YyRjUtRjk2JS1GIzYoLUY5NictRiM2Ji1GLDYmUSdjb2VmZnNGJ0YvRjJGNS1GOTYlLUYjNiotRiw2JlEoY29sbGVjdEYnRi9GMkY1LUY5NiUtRiM2LUZndkZeckZccC1GOTYnLUYjNiwtRiw2JlEjeTFGJ0YvRjJGNUZeckZccC1GLDYmUSN5MkYnRi9GMkY1Rl5yRlxwRmBbbC1GOTYnLUYjNidGZXFGXnJGZXFGQEZCRkBGQkZocUZbckZARkJGQEZCRmhxRltyRl5yRlxwLUZFNi5RIidGJ0YvRkhGSkZMRk5GUEZSRlRGVi9GWVEsMC4xMTExMTExZW1GJ0ZgcC1GLDYmUSxkaXN0cmlidXRlZEYnRi9GMkY1RmdbbEZARkJGQEZCRl5yRlxwRml6RlxwRkBGQkZARkJGQEZCRkBGQkZocUZbci8lJ2ZhbWlseUdRMFRpbWVzfk5ld35Sb21hbkYnRi8vJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUrZXhlY3V0YWJsZUdGMUZIRi9GSEZgeEZnbi1GLDYmUSRFUzJGJ0YvRjJGNUZhcEZgeS1GOTYlLUYjNigtRjk2Jy1GIzYmRlt6LUY5NiUtRiM2KkZiei1GOTYlLUYjNi1GY3hGXnJGXHAtRjk2Jy1GIzYsRl1bbEZeckZccEZgW2xGXnJGXHBGXVtsRmNbbEZARkJGQEZCRmhxRltyRl5yRlxwRmdbbEZcXGxGZ1tsRkBGQkZARkJGXnJGXHBGal1sRlxwRkBGQkZARkJGQEZCRkBGQkZocUZbckZfXGxGL0ZiXGxGZVxsRkhGL0ZIRmB4Rl9cbEYvRmJcbEZlXGxGSA==Note that there are two IO polynomials since there are two outputs (See L. Denis-Vidal, G. Joly-Blanchard, C. Noiret, and M. Petitot. An algorithm to test identifiability of non-linear systems. In Proceedings of 5th IFAC Symposium on Nonlinear Control Systems, volume 7, pages 174\342\200\223178, St Petersburg, Russia, 2001.)2.1 Computation of the algebraic signatureLUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzY1LUkjbWlHRiQ2JlEzU2VsZWN0aW9uT2ZJT0NvZWZmRicvJSVib2xkR1EmZmFsc2VGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYuUSomY29sb25lcTtGJ0YvL0Y2USdub3JtYWxGJy8lJmZlbmNlR0YxLyUqc2VwYXJhdG9yR0YxLyUpc3RyZXRjaHlHRjEvJSpzeW1tZXRyaWNHRjEvJShsYXJnZW9wR0YxLyUubW92YWJsZWxpbWl0c0dGMS8lJ2FjY2VudEdGMS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRk4tRjk2LlEifkYnRi9GPEY+RkBGQkZERkZGSEZKL0ZNUSYwLjBlbUYnL0ZQRlUtSShtZmVuY2VkR0YkNictRiM2My1GLDYmUSRFUzJGJ0YvRjJGNS1GWDYnLUYjNigtSSNtbkdGJDYlUSIyRidGL0Y8LyUnZmFtaWx5R1EwVGltZXN+TmV3flJvbWFuRidGLy8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJStleGVjdXRhYmxlR0YxRjxGL0Y8LyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnLUY5Ni5RIixGJ0YvRjxGPi9GQUY0RkJGREZGRkhGSkZUL0ZQUSwwLjMzMzMzMzNlbUYnRmZuLUZYNictRiM2KC1GXm82JVEiM0YnRi9GPEZhb0YvRmRvRmdvRjxGL0Y8RmlvRlxwRl9wRmZuLUZYNictRiM2KC1GXm82JVEiNEYnRi9GPEZhb0YvRmRvRmdvRjxGL0Y8RmlvRlxwRl9wLUYsNilRJEVTMUYnRmFvRi9GMkZkby8lMGZvbnRfc3R5bGVfbmFtZUdRKTJEfklucHV0RidGNS1GWDYqLUYjNiUtRl5vNihGYG9GYW9GL0Zkb0ZmcUY8L0Y2USVib2xkRicvJStmb250d2VpZ2h0R0ZgckZhb0YvRmRvRmZxRjxGaW9GXHAtRiw2I1EhRidGYW9GL0Zkb0Znb0Y8Ri9GPEZpb0ZccC1GOTYuUSI7RidGL0Y8Rj5GYnBGQkZERkZGSEZKRlRGTy1JJ21zcGFjZUdGJDYmLyUnaGVpZ2h0R1EmMC4wZXhGJy8lJndpZHRoR0ZVLyUmZGVwdGhHRl5zLyUqbGluZWJyZWFrR1EobmV3bGluZUYnLUZqcjYmRlxzRl9zRmFzL0Zkc1ElYXV0b0YnLUYsNiZRKEFsZ1NpZ25GJ0YvRjJGNUY4LUYsNiZRM0FsZ2VicmFpY1NpZ25hdHVyZUYnRi9GMkY1LUZYNiUtRiM2KkYrRl9wLUYsNiZRMVNpbmdsZWZhdWx0c0xpc3RGJ0YvRjJGNUZhb0YvRmRvRmdvRjxGX3JGYXJGUUZmckZjckZhb0YvRmRvRmdvRjw=
Note that f1 = 0 iff the component - phi_1+k1 of AlgSign is vanishing. The same remark can be done for f2 and k2+phi2.2.2 Computation of the expected values of the algebraic signature without taking into account constraints on the parametersLUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzZDLUkjbWlHRiQ2KFEjRVZGJy8lJ2ZhbWlseUdRLENvdXJpZXJ+TmV3RicvJSdpdGFsaWNHUSV0cnVlRicvJStmb3JlZ3JvdW5kR1ErWzEyMCwwLDE0XUYnLyUwZm9udF9zdHlsZV9uYW1lR1EsTWFwbGV+SW5wdXRGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYwUSJ+RidGL0Y1RjgvRjxRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0ZGLyUpc3RyZXRjaHlHRkYvJSpzeW1tZXRyaWNHRkYvJShsYXJnZW9wR0ZGLyUubW92YWJsZWxpbWl0c0dGRi8lJ2FjY2VudEdGRi8lJ2xzcGFjZUdRJjAuMGVtRicvJSdyc3BhY2VHRlUtRj82MFEqJmNvbG9uZXE7RidGL0Y1RjhGQkZERkdGSUZLRk1GT0ZRL0ZUUSwwLjI3Nzc3NzhlbUYnL0ZXRmZuRj4tRiw2KFFDRXhwZWN0ZWRWYWx1ZXNPZkFsZ2VicmFpY1NpZ25hdHVyZUYnRi9GMkY1RjhGOy1JKG1mZW5jZWRHRiQ2KS1GIzYrLUYsNihRKEFsZ1NpZ25GJ0YvRjJGNUY4RjstRj82MFEiLEYnRi9GNUY4RkJGRC9GSEY0RklGS0ZNRk9GUUZTL0ZXUSwwLjMzMzMzMzNlbUYnRj4tRiw2KFEzU2VsZWN0aW9uT2ZJT0NvZWZmRidGL0YyRjVGOEY7RmNvRj5GPi1GLDYoUTFTaW5nbGVmYXVsdHNMaXN0RidGL0YyRjVGOEY7RkJGLy8lJWJvbGRHRjRGNUY4L0Y8USVib2xkRicvJStmb250d2VpZ2h0R0ZicC1GPzYwUSI6RidGL0Y1RjhGQkZERkdGSUZLRk1GT0ZRRmVuRmduLUknbXNwYWNlR0YkNiYvJSdoZWlnaHRHUSYwLjBleEYnLyUmd2lkdGhHRlUvJSZkZXB0aEdGXXEvJSpsaW5lYnJlYWtHUShuZXdsaW5lRictRj82MlEkZm9yRidGL0ZfcEY1RjhGYXBGY3BGREZHRklGS0ZNRk9GUUZTRlZGPi1GLDYoUSJpRidGL0YyRjVGOEY7Rj4tRj82MlElZnJvbUYnRi9GX3BGNUY4RmFwRmNwRkRGR0ZJRktGTUZPRlFGU0ZWRj4tSSNtbkdGJDYnUSIxRidGL0Y1RjhGQkY+LUY/NjJRI3RvRidGL0ZfcEY1RjhGYXBGY3BGREZHRklGS0ZNRk9GUUZTRlZGPi1GLDYoUSVub3BzRidGL0YyRjVGOEY7LUZcbzYpLUYjNiRGK0ZCRi9GX3BGNUY4RmFwRmNwRj4tRj82MlEjZG9GJ0YvRl9wRjVGOEZhcEZjcEZERkdGSUZLRk1GT0ZRRlNGVkY+LUYsNihRJnByaW50RidGL0YyRjVGOEY7LUZcbzYpLUYjNiVGKy1GXG82Ky1GIzYkRmhxRkJGL0ZfcEY1RjhGYXBGY3AvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRidGQkYvRl9wRjVGOEZhcEZjcC1GPzYwUSI7RidGL0Y1RjhGQkZERmZvRklGS0ZNRk9GUUZTRmduRj4tRj82MlEkZW5kRidGL0ZfcEY1RjhGYXBGY3BGREZHRklGS0ZNRk9GUUZTRlZGPkZcc0ZgdC8lK2V4ZWN1dGFibGVHRkZGQg==
Recall that, in the vectors giving the expected values of the algebraic signature,
* 0 means that the component always vanishes,
* 1 that it never vanishes;
* -1 in the other cases.
Which single faults can be discriminated ?
Is there a component of this algebraic signature whose values characterize the presence of the single fault f2 in the multiple fault ?
In the next execution block, for each single fault fi, a component of the algebraic signature characterizing the presence of fi in any multiple fault is searched.LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYpLUkjbWlHRiQ2KFEmTENTRlNGJy8lJ2ZhbWlseUdRLENvdXJpZXJ+TmV3RicvJSdpdGFsaWNHUSV0cnVlRicvJStmb3JlZ3JvdW5kR1ErWzEyMCwwLDE0XUYnLyUwZm9udF9zdHlsZV9uYW1lR1EsTWFwbGV+SW5wdXRGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYwUSomY29sb25lcTtGJ0YvRjVGOC9GPFEnbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRkYvJSlzdHJldGNoeUdGRi8lKnN5bW1ldHJpY0dGRi8lKGxhcmdlb3BHRkYvJS5tb3ZhYmxlbGltaXRzR0ZGLyUnYWNjZW50R0ZGLyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGVS1GLDYoUTxTaW5nbGVGYXVsdENoYXJhY3Rlcml6YXRpb25GJ0YvRjJGNUY4RjstSShtZmVuY2VkR0YkNiktRiM2Ki1GLDYoUShBbGdTaWduRidGL0YyRjVGOEY7LUY/NjBRIixGJ0YvRjVGOEZCRkQvRkhGNEZJRktGTUZPRlEvRlRRJjAuMGVtRicvRldRLDAuMzMzMzMzM2VtRictRj82MFEifkYnRi9GNUY4RkJGREZHRklGS0ZNRk9GUUZhby9GV0Ziby1GLDYoUTNTZWxlY3Rpb25PZklPQ29lZmZGJ0YvRjJGNUY4RjtGXW9GZW8tRiw2KFExU2luZ2xlZmF1bHRzTGlzdEYnRi9GMkY1RjhGO0ZCRi8vJSVib2xkR0Y0RjVGOC9GPFElYm9sZEYnLyUrZm9udHdlaWdodEdGYnAtRj82MFEiO0YnRi9GNUY4RkJGREZgb0ZJRktGTUZPRlFGYW9GVi8lK2V4ZWN1dGFibGVHRkZGQg==2.3 Computation of the expected values of the algebraic signature taking into account constraints on the parametersLUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzZPLUkjbWlHRiQ2I1EhRictSSdtc3BhY2VHRiQ2Ji8lJ2hlaWdodEdRJjAuMGV4RicvJSZ3aWR0aEdRJjAuMGVtRicvJSZkZXB0aEdGNC8lKmxpbmVicmVha0dRJWF1dG9GJy1GLDYoUSVDb25kRicvJSdmYW1pbHlHUSxDb3VyaWVyfk5ld0YnLyUnaXRhbGljR1EldHJ1ZUYnLyUrZm9yZWdyb3VuZEdRK1sxMjAsMCwxNF1GJy8lMGZvbnRfc3R5bGVfbmFtZUdRLE1hcGxlfklucHV0RicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2MFEqJmNvbG9uZXE7RidGQEZGRkkvRk1RJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0ZXLyUpc3RyZXRjaHlHRlcvJSpzeW1tZXRyaWNHRlcvJShsYXJnZW9wR0ZXLyUubW92YWJsZWxpbWl0c0dGVy8lJ2FjY2VudEdGVy8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRmBvLUkobWZlbmNlZEdGJDYrLUYjNkstRiw2KFEiZEYnRkBGQ0ZGRklGTC1GUDYwUSI+RidGQEZGRklGU0ZVRlhGWkZmbkZobkZqbkZcb0Zeb0Zhby1JI21uR0YkNidRIjBGJ0ZARkZGSUZTLUZQNjBRIixGJ0ZARkZGSUZTRlUvRllGRUZaRmZuRmhuRmpuRlxvL0Zfb0Y3L0Zib1EsMC4zMzMzMzMzZW1GJy1GLDYoUSNrMUYnRkBGQ0ZGRklGTEZbcEZecEZicC1GLDYoUSNrMkYnRkBGQ0ZGRklGTEZbcEZecEZicC1GLDYoUSNrM0YnRkBGQ0ZGRklGTEZbcEZecEZicC1GLDYoUSNtMUYnRkBGQ0ZGRklGTEZbcEZecEZicC1GLDYoUSNtMkYnRkBGQ0ZGRklGTEZbcEZecEZicC1GLDYoUSNmMUYnRkBGQ0ZGRklGTC1GUDYwUS8mR3JlYXRlckVxdWFsO0YnRkBGRkZJRlNGVUZYRlpGZm5GaG5Gam5GXG9GXm9GYW9GXnBGYnAtRiw2KFEjZjJGJ0ZARkNGRkZJRkxGW3JGXnBGYnAtRiw2KFEjZjNGJ0ZARkNGRkZJRkxGW3JGXnBGYnAtRiw2KFEjZjRGJ0ZARkNGRkZJRkxGW3JGXnAvJStleGVjdXRhYmxlR0ZXRlNGQC8lJWJvbGRHRkVGRkZJL0ZNUSVib2xkRicvJStmb250d2VpZ2h0R0Zccy8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJy1GUDYwUSI6RidGQEZGRklGU0ZVRlhGWkZmbkZobkZqbkZcb0Zeb0Zhby1GMDYmRjJGNUY4L0Y7UShuZXdsaW5lRidGLy1GLDYoUSNFVkYnRkBGQ0ZGRklGTC1GUDYwUSJ+RidGQEZGRklGU0ZVRlhGWkZmbkZobkZqbkZcb0ZmcC9GYm9GN0ZPRl90LUYsNihRQ0V4cGVjdGVkVmFsdWVzT2ZBbGdlYnJhaWNTaWduYXR1cmVGJ0ZARkNGRkZJRkwtRmRvNiktRiM2Ly1GLDYoUShBbGdTaWduRidGQEZDRkZGSUZMRmJwRl90LUYsNihRM1NlbGVjdGlvbk9mSU9Db2VmZkYnRkBGQ0ZGRklGTEZicEZfdEZfdC1GLDYoUTFTaW5nbGVmYXVsdHNMaXN0RidGQEZDRkZGSUZMRmJwRl90Rj1GZ3JGU0ZARmlyRkZGSUZbc0Zdc0Zlc0Zoc0YvLUZQNjJRJGZvckYnRkBGaXJGRkZJRltzRl1zRlVGWEZaRmZuRmhuRmpuRlxvRmZwRmJ0Rl90LUYsNihRImlGJ0ZARkNGRkZJRkxGX3QtRlA2MlElZnJvbUYnRkBGaXJGRkZJRltzRl1zRlVGWEZaRmZuRmhuRmpuRlxvRmZwRmJ0Rl90LUZfcDYnUSIxRidGQEZGRklGU0ZfdC1GUDYyUSN0b0YnRkBGaXJGRkZJRltzRl1zRlVGWEZaRmZuRmhuRmpuRlxvRmZwRmJ0Rl90LUYsNihRJW5vcHNGJ0ZARkNGRkZJRkwtRmRvNiktRiM2JEZcdEZTRkBGaXJGRkZJRltzRl1zRl90LUZQNjJRI2RvRidGQEZpckZGRklGW3NGXXNGVUZYRlpGZm5GaG5Gam5GXG9GZnBGYnRGX3QtRiw2KFEmcHJpbnRGJ0ZARkNGRkZJRkwtRmRvNiktRiM2JUZcdC1GZG82Ky1GIzYkRmZ1RlNGQEZpckZGRklGW3NGXXNGX3NGYnNGU0ZARmlyRkZGSUZbc0Zdcy1GUDYwUSI7RidGQEZGRklGU0ZVRmVwRlpGZm5GaG5Gam5GXG9GZnBGYW9GX3QtRlA2MlEkZW5kRidGQEZpckZGRklGW3NGXXNGVUZYRlpGZm5GaG5Gam5GXG9GZnBGYnRGX3RGaXZGZ3dGL0YvRitGZ3JGUw==
What can be said about this output ?
Use the procedure SingleFaultCharaterization to confirm your observation. Remark that this function admits a fourth (optional) argument : the list of conditions, Cond.LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYmLUkjbW9HRiQ2LVEjLi5GJy8lLG1hdGh2YXJpYW50R1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRjQvJSlzdHJldGNoeUdGNC8lKnN5bW1ldHJpY0dGNC8lKGxhcmdlb3BHRjQvJS5tb3ZhYmxlbGltaXRzR0Y0LyUnYWNjZW50R0Y0LyUnbHNwYWNlR1EsMC4yMjIyMjIyZW1GJy8lJ3JzcGFjZUdRJjAuMGVtRictRiw2LVEiLkYnRi9GMkY1RjdGOUY7Rj1GPy9GQkZGRkQvJStleGVjdXRhYmxlR0Y0Ri8=LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=2.4 Complexity
Assume that the presence of a single fault fi in any multiple fault can be characterized by at least one component of the algebraic signature.
Let n be the number of single faults and m the number of components of the algebraic signature.
What is the maximum and the minimum numbers of emptyness tests of semialgebraic sets realized by each of the two following approaches?
* Use of the procedure LUkjbWlHNiMvSSttb2R1bGVuYW1lRzYiSSxUeXBlc2V0dGluZ0dJKF9zeXNsaWJHRic2KFFDRXhwZWN0ZWRWYWx1ZXNPZkFsZ2VicmFpY1NpZ25hdHVyZUYnLyUlc2l6ZUdRIzEyRicvJSdpdGFsaWNHUSV0cnVlRicvJStmb3JlZ3JvdW5kR1EqWzAsMTI4LDBdRicvJSxtYXRodmFyaWFudEdRLGJvbGQtaXRhbGljRicvJStmb250d2VpZ2h0R1ElYm9sZEYn knowing that each value of the output corresponds to one or two test(s).
* Use of the procedure SingleFaultCharacterization knowing that, for each fault f1, ..., fn, and for the m components of the algebraic signature, at most 2 tests are realized.
Answer
Procedure LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzZkby1JI21pR0YkNidRQ0V4cGVjdGVkVmFsdWVzT2ZBbGdlYnJhaWNTaWduYXR1cmVGJy8lJ2l0YWxpY0dRJmZhbHNlRicvJSp1bmRlcmxpbmVHUSV0cnVlRicvJStleGVjdXRhYmxlR0YxLyUsbWF0aHZhcmlhbnRHUSdub3JtYWxGJy1JI21vR0YkNi5RIn5GJ0Y1RjcvJSZmZW5jZUdGMS8lKnNlcGFyYXRvckdGMS8lKXN0cmV0Y2h5R0YxLyUqc3ltbWV0cmljR0YxLyUobGFyZ2VvcEdGMS8lLm1vdmFibGVsaW1pdHNHRjEvJSdhY2NlbnRHRjEvJSdsc3BhY2VHUSYwLjBlbUYnLyUncnNwYWNlR0ZOLUY7Ni5RIjpGJ0Y1RjdGPkZARkJGREZGRkhGSi9GTVEsMC4yNzc3Nzc4ZW1GJy9GUEZVRjotRiw2JlEmdGhlcmVGJ0YvRjVGN0Y6LUYsNiZRJGFyZUYnRi9GNUY3RjotSSVtc3VwR0YkNiUtSSNtbkdGJDYlUSIyRidGNUY3LUYjNiUtRiw2JlEibkYnRi9GNUY3RjVGNy8lMXN1cGVyc2NyaXB0c2hpZnRHUSIwRidGOi1GLDYmUSltdWx0aXBsZUYnRi9GNUY3RjotRiw2JlEnZmF1bHRzRidGL0Y1RjctRjs2LlEiLEYnRjVGN0Y+L0ZBRjRGQkZERkZGSEZKRkwvRlBRLDAuMzMzMzMzM2VtRidGOi1GOzYvUSRmb3JGJy8lJWJvbGRHRjFGNUY3Rj5GQEZCRkRGRkZIRkpGTEZPRjotRiw2JlElZWFjaEYnRi9GNUY3RjotRiw2JlEjb2ZGJ0YvRjVGN0Y6LUYsNiZRJXRoZW1GJ0YvRjVGN0Y6LUYsNiZRKGJldHdlZW5GJ0YvRjVGN0Y6LUYsNiZRIm1GJ0YvRjVGN0Y6LUY7Ni9RJGFuZEYnRmVwRjVGN0Y+RkBGQkZERkZGSEZKRkxGT0Y6RmpuRjpGY3FGOi1GLDYmUSZ0ZXN0c0YnRi9GNUY3RjpGWkY6LUYsNiZRKnBlcmZvcm1lZEYnRi9GNUY3LUY7Ni5RIi5GJ0Y1RjdGPkZARkJGREZGRkhGSkZMRk9GOi1JJ21zcGFjZUdGJDYmLyUnaGVpZ2h0R1EmMC4wZXhGJy8lJndpZHRoR0ZOLyUmZGVwdGhHRmdyLyUqbGluZWJyZWFrR1EobmV3bGluZUYnLUZjcjYmRmVyRmhyRmpyL0Zdc1ElYXV0b0YnLUYsNiZRKlRoZXJlZm9yZUYnRi9GNUY3RlxwRjpGYHFGOkZnbkZjcUY6RmZxRjotRmhuNiVGam4tRiM2J0Zgby1GOzYuUSIrRidGNUY3Rj5GQEZCRkRGRkZIRkovRk1RLDAuMjIyMjIyMmVtRicvRlBGXnQtRltvNiVRIjFGJ0Y1RjdGNUY3RmNvRmNxRjotRiw2JlEqZW1wdHluZXNzRidGL0Y1RjdGOkZpcUY6RmpwRjotRiw2JlEuc2VtaWFsZ2VicmFpY0YnRi9GNUY3RjotRiw2JlElc2V0c0YnRi9GNUY3RjpGWkY6LUYsNiZRKXJlYWxpemVkRidGL0Y1RjdGX3JGMkY1Rjc=
Procedure LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzZncC1JI21pR0YkNidRPFNpbmdsZUZhdWx0Q2hhcmFjdGVyaXphdGlvbkYnLyUnaXRhbGljR1EmZmFsc2VGJy8lKnVuZGVybGluZUdRJXRydWVGJy8lK2V4ZWN1dGFibGVHRjEvJSxtYXRodmFyaWFudEdRJ25vcm1hbEYnLUkjbW9HRiQ2LlEifkYnRjVGNy8lJmZlbmNlR0YxLyUqc2VwYXJhdG9yR0YxLyUpc3RyZXRjaHlHRjEvJSpzeW1tZXRyaWNHRjEvJShsYXJnZW9wR0YxLyUubW92YWJsZWxpbWl0c0dGMS8lJ2FjY2VudEdGMS8lJ2xzcGFjZUdRJjAuMGVtRicvJSdyc3BhY2VHRk4tRjs2LlEiOkYnRjVGN0Y+RkBGQkZERkZGSEZKL0ZNUSwwLjI3Nzc3NzhlbUYnL0ZQRlVGOi1GLDYmUSZ0aGVyZUYnRi9GNUY3RjotRiw2JlEkYXJlRidGL0Y1RjdGOi1GLDYmUSJuRidGL0Y1RjdGOi1GLDYmUSdzaW5nbGVGJ0YvRjVGN0Y6LUYsNiZRJ2ZhdWx0c0YnRi9GNUY3RjotRjs2L1EkYW5kRicvJSVib2xkR0YxRjVGN0Y+RkBGQkZERkZGSEZKRkxGTy1GOzYuUSIsRidGNUY3Rj4vRkFGNEZCRkRGRkZIRkpGTC9GUFEsMC4zMzMzMzMzZW1GJ0Y6LUY7Ni9RJGZvckYnRmNvRjVGN0Y+RkBGQkZERkZGSEZKRkxGT0Y6LUYsNiZRJWVhY2hGJ0YvRjVGN0Y6LUYsNiZRI29mRidGL0Y1RjdGOi1GLDYmUSV0aGVtRidGL0Y1RjdGOi1GLDYmUShiZXR3ZWVuRidGL0Y1RjdGOi1GLDYmUSJtRidGL0Y1RjdGOkZgb0Y6LUkjbW5HRiQ2JVEiMkYnRjVGN0Y6RmpwRjotRiw2JlEldGVzdEYnRi9GNUY3RjpGWkY6LUYsNiZRKnBlcmZvcm1lZEYnRi9GNUY3RjpGW3BGOi1GLDYmUSR0aGVGJ0YvRjVGN0Y6RmpwRjotRiw2JlErY29tcG9uZW50c0YnRi9GNUY3RjpGYXBGOkZncUY6LUYsNiZRKmFsZ2VicmFpY0YnRi9GNUY3RjotRiw2JlEqc2lnbmF0dXJlRidGL0Y1RjctRjs2LlEiLkYnRjVGN0Y+RkBGQkZERkZGSEZKRkxGT0Y6LUknbXNwYWNlR0YkNiYvJSdoZWlnaHRHUSYwLjBleEYnLyUmd2lkdGhHRk4vJSZkZXB0aEdGW3MvJSpsaW5lYnJlYWtHUShuZXdsaW5lRictRmdyNiZGaXJGXHNGXnMvRmFzUSVhdXRvRictRiw2JlEqVGhlcmVmb3JlRidGL0Y1RjdGZW9GOkZncEY6LUYsNiZRI25tRidGL0Y1RjdGOkZgb0Y6Rl1xRjpGZ25GanBGOi1GLDYmUSplbXB0eW5lc3NGJ0YvRjVGN0Y6LUYsNiZRJnRlc3RzRidGL0Y1RjdGOkZhcEY6LUYsNiZRLnNlbWlhbGdlYnJhaWNGJ0YvRjVGN0Y6LUYsNiZRJXNldHNGJ0YvRjVGN0Y6RlpGOi1GLDYmUSlyZWFsaXplZEYnRi9GNUY3RmNyRjJGNUY3JSFHJSFHLUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic=